Interpolation-Free Deep Learning for Meteorological Downscaling on Unaligned Grids Across Multiple Domains with Application to Wind Power
- URL: http://arxiv.org/abs/2410.03945v1
- Date: Fri, 4 Oct 2024 22:04:40 GMT
- Title: Interpolation-Free Deep Learning for Meteorological Downscaling on Unaligned Grids Across Multiple Domains with Application to Wind Power
- Authors: Jean-Sébastien Giroux, Simon-Philippe Breton, Julie Carreau,
- Abstract summary: Wind energy production is set to accelerate, and reliable wind probabilistic forecasts are essential to ensure its efficient use.
Since numerical weather prediction models are computationally expensive, probabilistic forecasts are produced at resolutions too coarse to capture all mesoscale wind behaviors.
Statistical downscaling presents a viable solution with lower computational costs by learning a mapping from low-resolution (LR) variables to high-resolution (HR) meteorological variables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As climate change intensifies, the shift to cleaner energy sources becomes increasingly urgent. With wind energy production set to accelerate, reliable wind probabilistic forecasts are essential to ensure its efficient use. However, since numerical weather prediction models are computationally expensive, probabilistic forecasts are produced at resolutions too coarse to capture all mesoscale wind behaviors. Statistical downscaling, typically applied to enchance the resolution of climate model simulations, presents a viable solution with lower computational costs by learning a mapping from low-resolution (LR) variables to high-resolution (HR) meteorological variables. Leveraging deep learning, we evaluate a downscaling model based on a state-of-the-art U-Net architecture, applied to an ensemble member from a coarse-scale probabilistic forecast of wind velocity. The architecture is modified to incorporate (1) a learned grid alignment strategy to resolve LR-HR grid mismatches and (2) a processing module for multi-level atmospheric predictors. To extend the downscaling model's applicability from fixed spatial domains to the entire Canadian region, we assess a transfer learning approach. Our results show that the learned grid alignment strategy performs as well as conventional pre-processing interpolation steps and that LR wind speed at multiple levels is sufficient as a predictor, enabling a more compact architecture. Additionally, they suggest that extending to new spatial domains using transfer learning is promising, and that downscaled wind velocities demonstrate potential in improving the detection of wind power ramps, a critical phenomenon for wind energy.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - A Novel Correlation-optimized Deep Learning Method for Wind Speed
Forecast [12.61580086941575]
The increasing installation rate of wind power poses great challenges to the global power system.
Deep learning is progressively applied to the wind speed prediction.
New cognition and memory units (CMU) are designed to reinforce traditional deep learning framework.
arXiv Detail & Related papers (2023-06-03T02:47:46Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Towards replacing precipitation ensemble predictions systems using
machine learning [0.0]
We propose a new approach to generating ensemble weather predictions for high-resolution precipitation.
The method uses generative adversarial networks to learn the complex patterns of precipitation.
We demonstrate the feasibility of generating realistic precipitation ensemble members on unseen higher resolutions.
arXiv Detail & Related papers (2023-04-20T12:20:35Z) - An unsupervised learning approach for predicting wind farm power and
downstream wakes using weather patterns [0.0]
We develop a novel wind energy workflow that combines weather patterns derived from unsupervised clustering techniques with numerical weather prediction models.
We show that our long-term predictions agree with those from a year of WRF simulations but require less than 2% of the computational time.
Our approach facilitates multi-year predictions of power output and downstream farm wakes, by providing a fast, accurate and flexible methodology.
arXiv Detail & Related papers (2023-02-12T10:05:25Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.