Multimodal Approaches to Fair Image Classification: An Ethical Perspective
- URL: http://arxiv.org/abs/2412.12165v1
- Date: Wed, 11 Dec 2024 19:58:31 GMT
- Title: Multimodal Approaches to Fair Image Classification: An Ethical Perspective
- Authors: Javon Hickmon,
- Abstract summary: This thesis explores the intersection of technology and ethics in the development of fair image classification models.
I focus on improving fairness and methods of using multiple modalities to combat harmful demographic bias.
The study critically examines existing biases in image datasets and classification algorithms, proposes innovative methods for mitigating these biases, and evaluates the ethical implications of deploying such systems in real-world scenarios.
- Score: 0.0
- License:
- Abstract: In the rapidly advancing field of artificial intelligence, machine perception is becoming paramount to achieving increased performance. Image classification systems are becoming increasingly integral to various applications, ranging from medical diagnostics to image generation; however, these systems often exhibit harmful biases that can lead to unfair and discriminatory outcomes. Machine Learning systems that depend on a single data modality, i.e. only images or only text, can exaggerate hidden biases present in the training data, if the data is not carefully balanced and filtered. Even so, these models can still harm underrepresented populations when used in improper contexts, such as when government agencies reinforce racial bias using predictive policing. This thesis explores the intersection of technology and ethics in the development of fair image classification models. Specifically, I focus on improving fairness and methods of using multiple modalities to combat harmful demographic bias. Integrating multimodal approaches, which combine visual data with additional modalities such as text and metadata, allows this work to enhance the fairness and accuracy of image classification systems. The study critically examines existing biases in image datasets and classification algorithms, proposes innovative methods for mitigating these biases, and evaluates the ethical implications of deploying such systems in real-world scenarios. Through comprehensive experimentation and analysis, the thesis demonstrates how multimodal techniques can contribute to more equitable and ethical AI solutions, ultimately advocating for responsible AI practices that prioritize fairness.
Related papers
- INFELM: In-depth Fairness Evaluation of Large Text-To-Image Models [8.340794604348632]
Multi-modal AI systems have potential for industrial applications by emulating human-like cognition.
They also pose significant ethical challenges, including amplifying harmful content and reinforcing societal biases.
This paper presents INFELM, an in-depth fairness evaluation on widely-used text-to-image models.
arXiv Detail & Related papers (2024-12-28T02:28:19Z) - Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
Computer vision systems are increasingly being deployed in high-stakes real-world applications.
There is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data.
This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision.
arXiv Detail & Related papers (2024-08-05T13:44:22Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging [2.0890189482817165]
We introduce a novel analysis framework for investigating the impact of biases in medical images on AI models.
We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI.
arXiv Detail & Related papers (2023-11-03T01:37:28Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Improving Fairness of AI Systems with Lossless De-biasing [15.039284892391565]
Mitigating bias in AI systems to increase overall fairness has emerged as an important challenge.
We present an information-lossless de-biasing technique that targets the scarcity of data in the disadvantaged group.
arXiv Detail & Related papers (2021-05-10T17:38:38Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
We propose a comprehensive set of de-biasing methods for fair HINs representation learning.
We study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy.
We evaluate the performance of the proposed methods in an automated career counseling application.
arXiv Detail & Related papers (2021-04-18T08:28:18Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.