Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
- URL: http://arxiv.org/abs/2311.02115v2
- Date: Mon, 1 Jul 2024 16:30:53 GMT
- Title: Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
- Authors: Emma A. M. Stanley, Raissa Souza, Anthony Winder, Vedant Gulve, Kimberly Amador, Matthias Wilms, Nils D. Forkert,
- Abstract summary: We introduce a novel analysis framework for investigating the impact of biases in medical images on AI models.
We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI.
- Score: 2.0890189482817165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of disparities in performance between subgroups. Since not all sources of biases in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess how those biases are encoded in models, and how capable bias mitigation methods are at ameliorating performance disparities. In this article, we introduce a novel analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI using a tool for generating synthetic magnetic resonance images with known disease effects and sources of bias. The feasibility is showcased by using three counterfactual bias scenarios to measure the impact of simulated bias effects on a convolutional neural network (CNN) classifier and the efficacy of three bias mitigation strategies. The analysis revealed that the simulated biases resulted in expected subgroup performance disparities when the CNN was trained on the synthetic datasets. Moreover, reweighing was identified as the most successful bias mitigation strategy for this setup, and we demonstrated how explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. Developing fair AI models is a considerable challenge given that many and often unknown sources of biases can be present in medical imaging datasets. In this work, we present a novel methodology to objectively study the impact of biases and mitigation strategies on deep learning pipelines, which can support the development of clinical AI that is robust and responsible.
Related papers
- Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models [6.300835344100545]
Leveraging artificial intelligence in conjunction with electronic health records holds transformative potential to improve healthcare.
Yet, addressing bias in AI, which risks worsening healthcare disparities, cannot be overlooked.
This study reviews methods to detect and mitigate diverse forms of bias in AI models developed using EHR data.
arXiv Detail & Related papers (2023-10-30T18:29:15Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - An investigation into the impact of deep learning model choice on sex
and race bias in cardiac MR segmentation [8.449342469976758]
We investigate how imbalances in subject sex and race affect AI-based cine cardiac magnetic resonance image segmentation.
We find significant sex bias in three of the four models and racial bias in all of the models.
arXiv Detail & Related papers (2023-08-25T14:55:38Z) - No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning
for Medical Imaging [20.562862525019916]
We show how different sources of dataset bias may appear indistinguishable yet require substantially different mitigation strategies.
We provide a practical three-step framework for reasoning about fairness in medical imaging, supporting the development of safe and equitable AI prediction models.
arXiv Detail & Related papers (2023-07-31T09:48:32Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Explaining medical AI performance disparities across sites with
confounder Shapley value analysis [8.785345834486057]
Multi-site evaluations are key to diagnosing such disparities.
Our framework provides a method for quantifying the marginal and cumulative effect of each type of bias on the overall performance difference.
We demonstrate its usefulness in a case study of a deep learning model trained to detect the presence of pneumothorax.
arXiv Detail & Related papers (2021-11-12T18:54:10Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - "Name that manufacturer". Relating image acquisition bias with task
complexity when training deep learning models: experiments on head CT [0.0]
We analyze how the distribution of scanner manufacturers in a dataset can contribute to the overall bias of deep learning models.
We demonstrate that CNNs can learn to distinguish the imaging scanner manufacturer and that this bias can substantially impact model performance.
arXiv Detail & Related papers (2020-08-19T16:05:58Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.