A Decomposition Modeling Framework for Seasonal Time-Series Forecasting
- URL: http://arxiv.org/abs/2412.12168v1
- Date: Thu, 12 Dec 2024 01:37:25 GMT
- Title: A Decomposition Modeling Framework for Seasonal Time-Series Forecasting
- Authors: Yining Pang, Chenghan Li,
- Abstract summary: Seasonal time series exhibit intricate long-term dependencies.
This paper introduces the Multi-scale Seasonal Decomposition Model (MSSD) for seasonal time-series forecasting.
- Score: 0.0
- License:
- Abstract: Seasonal time series exhibit intricate long-term dependencies, posing a significant challenge for accurate future prediction. This paper introduces the Multi-scale Seasonal Decomposition Model (MSSD) for seasonal time-series forecasting. Initially, leveraging the inherent periodicity of seasonal time series, we decompose the univariate time series into three primary components: Ascending, Peak, and Descending. This decomposition approach enhances the capture of periodic features. By addressing the limitations of existing time-series modeling methods, particularly in modeling the Peak component, this research proposes a multi-scale network structure designed to effectively capture various potential peak fluctuation patterns in the Peak component. This study integrates Conv2d and Temporal Convolutional Networks to concurrently capture global and local features. Furthermore, we incorporate multi-scale reshaping to augment the modeling capacity for peak fluctuation patterns. The proposed methodology undergoes validation using three publicly accessible seasonal datasets. Notably, in both short-term and long-term fore-casting tasks, our approach exhibits a 10$\%$ reduction in error compared to the baseline models.
Related papers
- Ister: Inverted Seasonal-Trend Decomposition Transformer for Explainable Multivariate Time Series Forecasting [10.32586981170693]
Inverted Seasonal-Trend Decomposition Transformer (Ister)
We introduce a novel Dot-attention mechanism that improves interpretability, computational efficiency, and predictive accuracy.
Ister enables intuitive visualization of component contributions, shedding lights on model's decision process and enhancing transparency in prediction results.
arXiv Detail & Related papers (2024-12-25T06:37:19Z) - FDF: Flexible Decoupled Framework for Time Series Forecasting with Conditional Denoising and Polynomial Modeling [5.770377200028654]
Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries.
We argue that diffusion models suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising.
We propose a novel flexible decoupled framework that learns high-quality time series representations for enhanced forecasting performance.
arXiv Detail & Related papers (2024-10-17T06:20:43Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
We propose a neural model that takes randomly sampled histories and outputs an adjustable basis composition as a continuous function of time.
It involves three key components: (1) a flexible approach for using randomly sampled histories from a long-tail distribution; (2) a transformer backbone that is trained on these actively sampled histories to produce, as representational output; and (3) the basis coefficients of a continuous function of time.
arXiv Detail & Related papers (2024-07-25T08:48:07Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.