TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting
- URL: http://arxiv.org/abs/2505.17532v1
- Date: Fri, 23 May 2025 06:39:20 GMT
- Title: TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting
- Authors: Bin Wang, Heming Yang, Jinfang Sheng,
- Abstract summary: We propose a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer.<n>TimeCF decomposes the original time series into sequences of different scales.<n>Different scales are aggregated through a Feed-Forward Network.
- Score: 5.032613143415414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that by introducing prior knowledge, multi-scale analysis of complex and non-stationary time series in real environments can achieve good results in the field of long-term forecasting. However, affected by channel-independent methods, models based on multi-scale analysis may produce suboptimal prediction results due to the autocorrelation between time series labels, which in turn affects the generalization ability of the model. To address this challenge, we are inspired by the idea of sharpness-aware minimization and the recently proposed FreDF method and design a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer, combined with our designed adaptive convolution information aggregation module and Sharpness-Aware Minimization Frequency Domain Loss (SAMFre). Specifically, TimeCF first decomposes the original time series into sequences of different scales. Next, the same-sized convolution modules are used to adaptively aggregate information of different scales on sequences of different scales. Then, decomposing each sequence into season and trend parts and the two parts are mixed at different scales through bottom-up and top-down methods respectively. Finally, different scales are aggregated through a Feed-Forward Network. What's more, extensive experimental results on different real-world datasets show that our proposed TimeCF has excellent performance in the field of long-term forecasting.
Related papers
- Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - Time Tracker: Mixture-of-Experts-Enhanced Foundation Time Series Forecasting Model with Decoupled Training Pipelines [5.543238821368548]
Time series often exhibit significant diversity in their temporal patterns across different time spans and domains.<n>Time Tracker achieves state-of-the-art performance in predicting accuracy, model generalization and adaptability.
arXiv Detail & Related papers (2025-05-21T06:18:41Z) - A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting [6.344911113059126]
Long-term time series forecasting (LTSF) offers broad utility in practical settings like energy consumption and weather prediction.<n>This work confronts key issues in LTSF, including the suboptimal use of multi-granularity information.<n>Our method adeptly disentangles complex temporal dynamics using clear, concurrent predictions across various scales.
arXiv Detail & Related papers (2025-05-13T03:26:44Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
Time series data is prevalent across numerous fields, necessitating the development of robust and accurate forecasting models.
We introduce xLSTM-Mixer, a model designed to effectively integrate temporal sequences, joint time-variable information, and multiple perspectives for robust forecasting.
Our evaluations demonstrate xLSTM-Mixer's superior long-term forecasting performance compared to recent state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T11:59:36Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [19.88184356154215]
Time series forecasting is widely used in applications, such as traffic planning and weather forecasting.
TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-05-23T14:27:07Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
We propose a all-Multi-Layer Perceptron (all-MLP) time series forecasting architecture called RPMixer.
Our method capitalizes on the ensemble-like behavior of deep neural networks, where each individual block behaves like a base learner in an ensemble model.
arXiv Detail & Related papers (2024-02-16T07:28:59Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.