Apollo-Forecast: Overcoming Aliasing and Inference Speed Challenges in Language Models for Time Series Forecasting
- URL: http://arxiv.org/abs/2412.12226v1
- Date: Mon, 16 Dec 2024 11:01:20 GMT
- Title: Apollo-Forecast: Overcoming Aliasing and Inference Speed Challenges in Language Models for Time Series Forecasting
- Authors: Tianyi Yin, Jingwei Wang, Yunlong Ma, Han Wang, Chenze Wang, Yukai Zhao, Min Liu, Weiming Shen, Yufeng Chen,
- Abstract summary: Anti-Aliasing Quantization Module (AAQM) and Race Decoding (RD) technique are presented.
AAQM adeptly encodes sequences into tokens while mitigating high-frequency noise in the original signals.
RD employs a draft model to enable parallel processing and results integration, which markedly accelerates the inference speed for long-term predictions.
- Score: 16.177920916883565
- License:
- Abstract: Encoding time series into tokens and using language models for processing has been shown to substantially augment the models' ability to generalize to unseen tasks. However, existing language models for time series forecasting encounter several obstacles, including aliasing distortion and prolonged inference times, primarily due to the limitations of quantization processes and the computational demands of large models. This paper introduces Apollo-Forecast, a novel framework that tackles these challenges with two key innovations: the Anti-Aliasing Quantization Module (AAQM) and the Race Decoding (RD) technique. AAQM adeptly encodes sequences into tokens while mitigating high-frequency noise in the original signals, thus enhancing both signal fidelity and overall quantization efficiency. RD employs a draft model to enable parallel processing and results integration, which markedly accelerates the inference speed for long-term predictions, particularly in large-scale models. Extensive experiments on various real-world datasets show that Apollo-Forecast outperforms state-of-the-art methods by 35.41\% and 18.99\% in WQL and MASE metrics, respectively, in zero-shot scenarios. Furthermore, our method achieves a 1.9X-2.7X acceleration in inference speed over baseline methods.
Related papers
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.
LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.82times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [55.0194604505437]
Speculative decoding has emerged as a widely adopted method to accelerate large language model inference.
This paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences.
arXiv Detail & Related papers (2024-08-10T21:24:25Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
We propose a novel framework specifically designed for speculative sampling.
Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words.
We demonstrate impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach.
arXiv Detail & Related papers (2024-02-24T08:10:39Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters.
We propose textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)
arXiv Detail & Related papers (2024-02-19T03:39:10Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
Diffusion models heavily depend on the time-step $t$ to achieve satisfactory multi-round denoising.
We propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block.
Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features.
arXiv Detail & Related papers (2023-11-27T12:59:52Z) - Latent Autoregressive Source Separation [5.871054749661012]
This paper introduces vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models.
Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens.
arXiv Detail & Related papers (2023-01-09T17:32:00Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Series is a novel end-to-end approach that reprograms acoustic models for time series classification.
We show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%.
arXiv Detail & Related papers (2021-06-17T07:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.