LogBabylon: A Unified Framework for Cross-Log File Integration and Analysis
- URL: http://arxiv.org/abs/2412.12364v1
- Date: Mon, 16 Dec 2024 21:36:03 GMT
- Title: LogBabylon: A Unified Framework for Cross-Log File Integration and Analysis
- Authors: Rabimba Karanjai, Yang Lu, Dana Alsagheer, Keshav Kasichainula, Lei Xu, Weidong Shi, Shou-Hsuan Stephen Huang,
- Abstract summary: LogBabylon is a central log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology.
LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy.
Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance.
- Score: 6.185113951720912
- License:
- Abstract: Logs are critical resources that record events, activities, or messages produced by software applications, operating systems, servers, and network devices. However, consolidating the heterogeneous logs and cross-referencing them is challenging and complicated. Manually analyzing the log data is time-consuming and prone to errors. LogBabylon is a centralized log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology. LogBabylon interprets the log data in a human-readable way and adds insight analysis of the system performance and anomaly alerts. It provides a paramount view of the system landscape, enabling proactive management and rapid incident response. LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy. This facilitates a deeper understanding of log data, supporting more effective decision-making and operational efficiency. Furthermore, LogBabylon streamlines the log analysis process, significantly reducing the time and effort required to interpret complex datasets. Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance in dynamic computing environments.
Related papers
- Cross-System Software Log-based Anomaly Detection Using Meta-Learning [17.39262430769509]
AIOps tools have been developed to automate the process of log-based anomaly detection for software systems.
Three practical challenges are widely recognized in this field: high data labeling costs, evolving logs in dynamic systems, and adaptability across different systems.
We propose CroSysLog, an AIOps tool for log-event level anomaly detection, specifically designed in response to these challenges.
arXiv Detail & Related papers (2024-12-19T22:55:45Z) - LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models [19.657278472819588]
We introduce Log-LLM, a novel log integrated with LLM capabilities.
We address the intricate challenge of parsing granularity, proposing a new metric to allow users to calibrate granularity to their specific needs.
Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark.
arXiv Detail & Related papers (2024-08-25T05:34:24Z) - Log Summarisation for Defect Evolution Analysis [14.055261850785456]
We suggest an online semantic-based clustering approach to error logs.
We also introduce a novel metric to evaluate the performance of temporal log clusters.
arXiv Detail & Related papers (2024-03-13T09:18:46Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? [42.56249610409624]
We provide a new collection of annotated log datasets, denoted Loghub-2.0, which can better reflect the characteristics of log data in real-world software systems.
We conduct a thorough re-evaluation of 15 state-of-the-art logs in a more rigorous and practical setting. Particularly, we introduce a new evaluation metric to mitigate the sensitivity of existing metrics to imbalanced data distributions.
arXiv Detail & Related papers (2023-08-21T16:24:15Z) - Log Parsing Evaluation in the Era of Modern Software Systems [47.370291246632114]
We focus on one integral part of automated log analysis, log parsing, which is the prerequisite to deriving any insights from logs.
Our investigation reveals problematic aspects within the log parsing field, particularly its inefficiency in handling heterogeneous real-world logs.
We propose a tool, Logchimera, that enables estimating log parsing performance in industry contexts.
arXiv Detail & Related papers (2023-08-17T14:19:22Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.