Log Summarisation for Defect Evolution Analysis
- URL: http://arxiv.org/abs/2403.08358v1
- Date: Wed, 13 Mar 2024 09:18:46 GMT
- Title: Log Summarisation for Defect Evolution Analysis
- Authors: Rares Dolga, Ran Zmigrod, Rui Silva, Salwa Alamir, Sameena Shah
- Abstract summary: We suggest an online semantic-based clustering approach to error logs.
We also introduce a novel metric to evaluate the performance of temporal log clusters.
- Score: 14.055261850785456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Log analysis and monitoring are essential aspects in software maintenance and
identifying defects. In particular, the temporal nature and vast size of log
data leads to an interesting and important research question: How can logs be
summarised and monitored over time? While this has been a fundamental topic of
research in the software engineering community, work has typically focused on
heuristic-, syntax-, or static-based methods. In this work, we suggest an
online semantic-based clustering approach to error logs that dynamically
updates the log clusters to enable monitoring code error life-cycles. We also
introduce a novel metric to evaluate the performance of temporal log clusters.
We test our system and evaluation metric with an industrial dataset and find
that our solution outperforms similar systems. We hope that our work encourages
further temporal exploration in defect datasets.
Related papers
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM
considering Token-level information [7.861095039299132]
The need for log anomaly detection is growing, especially in real-world applications.
Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays.
We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays.
arXiv Detail & Related papers (2023-11-09T06:11:44Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - EvLog: Identifying Anomalous Logs over Software Evolution [31.46106509190191]
We propose a novel unsupervised approach named Evolving Log extractor (EvLog) to process logs without parsing.
EvLog implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence.
EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively.
arXiv Detail & Related papers (2023-06-02T12:58:00Z) - MoniLog: An Automated Log-Based Anomaly Detection System for Cloud
Computing Infrastructures [3.04585143845864]
MoniLog is a distributed approach to detect real-time anomalies within large-scale environments.
It aims to detect sequential and quantitative anomalies within a multi-source log stream.
arXiv Detail & Related papers (2023-04-24T09:21:52Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
arXiv Detail & Related papers (2022-09-16T11:51:58Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Log2NS: Enhancing Deep Learning Based Analysis of Logs With Formal to
Prevent Survivorship Bias [0.37943450391498496]
We introduce log to Neuro-symbolic (Log2NS), a framework that combines probabilistic analysis from machine learning (ML) techniques on observational data with certainties derived from symbolic reasoning on an underlying formal model.
Log2NS provides an ability to query from static logs and correlation engines for positive instances, as well as formal reasoning for negative and unseen instances.
arXiv Detail & Related papers (2021-05-29T00:01:08Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.