Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments
- URL: http://arxiv.org/abs/2412.12417v1
- Date: Mon, 16 Dec 2024 23:50:21 GMT
- Title: Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments
- Authors: Tuka Alhanai, Adam Kasumovic, Mohammad Ghassemi, Aven Zitzelberger, Jessica Lundin, Guillaume Chabot-Couture,
- Abstract summary: This paper creates approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages.<n>Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology.<n>Using the benchmarks translated, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages.
- Score: 0.9214083577876088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.
Related papers
- Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance [0.0]
We present our latest Hindi-English bi-lingual LLM textbfMantra-14B with 3% average improvement in benchmark scores over both languages.
We instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi.
Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead.
arXiv Detail & Related papers (2025-04-13T23:10:13Z) - Lugha-Llama: Adapting Large Language Models for African Languages [48.97516583523523]
Large language models (LLMs) have achieved impressive results in a wide range of natural language applications.
We consider how to adapt LLMs to low-resource African languages.
We find that combining curated data from African languages with high-quality English educational texts results in a training mix that substantially improves the model's performance on these languages.
arXiv Detail & Related papers (2025-04-09T02:25:53Z) - INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages [15.983678567785004]
Slot-filling and intent detection are well-established tasks in Conversational AI.
We introduce Injongo -- a multicultural, open-source benchmark dataset for 16 African languages.
We show the advantage of leveraging African-cultural utterances over Western-centric utterances for improving cross-lingual transfer.
arXiv Detail & Related papers (2025-02-13T23:17:10Z) - Transcending Language Boundaries: Harnessing LLMs for Low-Resource Language Translation [38.81102126876936]
This paper introduces a novel retrieval-based method that enhances translation quality for low-resource languages by focusing on key terms.
To evaluate the effectiveness of this method, we conducted experiments translating from English into three low-resource languages: Cherokee, a critically endangered indigenous language of North America; Tibetan, a historically and culturally significant language in Asia; and Manchu, a language with few remaining speakers.
Our comparison with the zero-shot performance of GPT-4o and LLaMA 3.1 405B, highlights the significant challenges these models face when translating into low-resource languages.
arXiv Detail & Related papers (2024-11-18T05:41:27Z) - Cultural Fidelity in Large-Language Models: An Evaluation of Online Language Resources as a Driver of Model Performance in Value Representation [0.0]
We show that the ability of GPT-4o to reflect societal values of a country correlates with the availability of digital resources in that language.
Weaker performance in low-resource languages, especially prominent in the Global South, may worsen digital divides.
arXiv Detail & Related papers (2024-10-14T13:33:00Z) - IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models [18.260317326787035]
This paper introduces IrokoBench -- a human-translated benchmark dataset for 16 typologically-diverse low-resource African languages.
We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings(where test sets are translated into English) across 10 open and four proprietary language models.
We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58% of the best-performing proprietary model GPT-4o performance.
arXiv Detail & Related papers (2024-06-05T15:23:08Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - How good are Large Language Models on African Languages? [18.660783984850845]
We present an analysis of four popular large language models (mT0, Aya, LLaMa 2, and GPT-4) on six tasks across 60 African languages.
Our results suggest that all LLMs produce lower performance for African languages, and there is a large gap in performance compared to high-resource languages.
arXiv Detail & Related papers (2023-11-14T08:10:14Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity
Recognition [55.95128479289923]
African languages are spoken by over a billion people, but are underrepresented in NLP research and development.
We create the largest human-annotated NER dataset for 20 African languages.
We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points.
arXiv Detail & Related papers (2022-10-22T08:53:14Z) - AfroMT: Pretraining Strategies and Reproducible Benchmarks for
Translation of 8 African Languages [94.75849612191546]
AfroMT is a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages.
We develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages.
We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines.
arXiv Detail & Related papers (2021-09-10T07:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.