Quantum thermal machine as a rectifier
- URL: http://arxiv.org/abs/2412.12477v1
- Date: Tue, 17 Dec 2024 02:29:43 GMT
- Title: Quantum thermal machine as a rectifier
- Authors: M. Santiago-García, O. Pusuluk, Ö. E. Müstecaplıoğlu, B. Çakmak, R. Román-Ancheyta,
- Abstract summary: We study a chain of interacting individual quantum systems connected to heat baths at different temperatures on both ends.
We find that heat rectification in the weak coupling regime can be independent of the chain length and that negative differential thermal conductance occurs.
- Score: 0.0
- License:
- Abstract: We study a chain of interacting individual quantum systems connected to heat baths at different temperatures on both ends. Starting with the two-system case, we thoroughly investigate the conditions for heat rectification (asymmetric heat conduction), compute thermal conductance, and generalize the results to longer chains. We find that heat rectification in the weak coupling regime can be independent of the chain length and that negative differential thermal conductance occurs. We also examine the relationship between heat rectification with entanglement and the entropy production. In the strong coupling regime, the system exhibits an asymmetric Rabi-type splitting in the thermal conductance, leading to enhanced heat transport and improved rectification inaccessible in the weak coupling. This setup represents the simplest quantum thermal machine that consumes incoherent resources and delivers entanglement while acting as a rectifier and heat valve.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Characterizing the performance of heat rectifiers [17.77602155559703]
We quantify the performance of a heat by mapping out the trade-off between heat currents and rectification.
Our results demonstrate the superiority of two strongly-interacting qubits for heat rectification.
arXiv Detail & Related papers (2022-08-23T08:48:05Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - The qutrit as a heat diode and circulator [0.0]
We investigate the heat transport properties of a three-level system coupled to three thermal baths, assuming a model based on superconducting circuit implementations.
We find thermal rectification and circulation effects not expected in configurations with perfectly-filtered couplings.
Heat leakage in off-resonant transitions can be exploited to make the system work as an ideal diode where heat flows in the same direction between two baths irrespective of the sign of the temperature difference.
arXiv Detail & Related papers (2021-09-14T09:47:08Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Thermal rectification and negative differential thermal conductivity
based on a parallel-coupled double quantum-dot [10.266211487293651]
We demonstrate the effects of thermal rectification and negative differential thermal conductance (NDTC) exist in this system.
We find that this system can achieve a high thermal rectification ratio and NDTC when the asymmetry factor of the system is enhanced.
arXiv Detail & Related papers (2020-07-09T11:59:56Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.