Fully quantum stochastic entropy production
- URL: http://arxiv.org/abs/2412.12489v2
- Date: Fri, 20 Dec 2024 06:33:02 GMT
- Title: Fully quantum stochastic entropy production
- Authors: Ge Bai, Francesco Buscemi, Valerio Scarani,
- Abstract summary: Building on the approach of thermodynamics, we define entropy production for arbitrary quantum processes.
We show that the classical expression for average entropy production involves only comparisons of statistics at the input or output.
We construct an entropy production operator, that generalizes the value of entropy to the non-commutative case.
- Score: 2.3895981099137535
- License:
- Abstract: Building on the approach of stochastic thermodynamics, we define entropy production for arbitrary quantum processes, using Bayesian tools to capture the inherent subjective element. First, we show that the classical expression for average entropy production involves only comparisons of statistics at the input or output, and thus can be formally generalized by replacing probability distributions by quantum states. To go beyond the mere average, we construct an entropy production operator, that generalizes the value of entropy to the non-commutative case. The operator is Hermitian; its average is non-negative, so that the Second Law takes its usual form $\langle\Sigma\rangle\geq 0$; it formally satisfies the Jarzynski equality and the Crooks fluctuation theorem; and recovers the classical expression for classical processes. We also present features whose fully quantum version is not a straightforward translation of the classical one: these may point to the core difference between classical and quantum thermodynamics.
Related papers
- (Quantum) Indifferentiability and Pre-Computation [50.06591179629447]
Indifferentiability is a cryptographic paradigm for analyzing the security of ideal objects.
Despite its strength, indifferentiability is not known to offer security against pre-processing attacks.
We propose a strengthening of indifferentiability which is not only composable but also takes arbitrary pre-computation into account.
arXiv Detail & Related papers (2024-10-22T00:41:47Z) - Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Entropy Production from Maximum Entropy Principle: a Unifying Approach [0.0]
Entropy production is the crucial quantity characterizing irreversible phenomena and the second law of thermodynamics.
We use Jaynes' maximum entropy principle to establish a framework that brings together prominent and apparently conflicting definitions.
arXiv Detail & Related papers (2024-01-18T12:32:45Z) - On Quantum Entropy and Excess Entropy Production in a System-Environment
Pure State [0.0]
We explore a recently introduced quantum thermodynamic entropy $SQ_univ$ of a pure state of a composite system-environment computational "universe"
The principal focus is "excess entropy production" in which the quantum entropy change is greater than expected from the classical entropy-free energy relationship.
arXiv Detail & Related papers (2022-11-25T14:57:44Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Logical Entropy and Negative Probabilities in Quantum Mechanics [0.0]
The concept of Logical Entropy, $S_L = 1- sum_i=1n p_i2$, was introduced by David Ellerman in a series of recent papers.
We show that the logical entropy plays a profound role in establishing the peculiar rules of quantum physics.
arXiv Detail & Related papers (2022-01-12T10:49:43Z) - Towards a functorial description of quantum relative entropy [0.0]
Affine functor defines an affine functor in the special case where the relative entropy is finite.
A recent non-commutative disintegration theorem provides a key ingredient in this proof.
arXiv Detail & Related papers (2021-05-10T00:58:46Z) - Shannon Entropy Rate of Hidden Markov Processes [77.34726150561087]
We show how to calculate entropy rates for hidden Markov chains.
We also show how this method gives the minimal set of infinite predictive features.
A sequel addresses the challenge's second part on structure.
arXiv Detail & Related papers (2020-08-29T00:48:17Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Generalized Entropy Regularization or: There's Nothing Special about
Label Smoothing [83.78668073898001]
We introduce a family of entropy regularizers, which includes label smoothing as a special case.
We find that variance in model performance can be explained largely by the resulting entropy of the model.
We advise the use of other entropy regularization methods in its place.
arXiv Detail & Related papers (2020-05-02T12:46:28Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.