Multi-Scale Cross-Fusion and Edge-Supervision Network for Image Splicing Localization
- URL: http://arxiv.org/abs/2412.12503v1
- Date: Tue, 17 Dec 2024 03:10:04 GMT
- Title: Multi-Scale Cross-Fusion and Edge-Supervision Network for Image Splicing Localization
- Authors: Yakun Niu, Pei Chen, Lei Zhang, Hongjian Yin, Qi Chang,
- Abstract summary: We propose a multi-scale cross-fusion and edge-supervision network for ISL.
Our framework consists of three key steps: multi-scale features cross-fusion, edge mask prediction and edge-supervision localization.
Our proposed method is superior to state-of-the-art schemes.
- Score: 13.776343759641343
- License:
- Abstract: Image Splicing Localization (ISL) is a fundamental yet challenging task in digital forensics. Although current approaches have achieved promising performance, the edge information is insufficiently exploited, resulting in poor integrality and high false alarms. To tackle this problem, we propose a multi-scale cross-fusion and edge-supervision network for ISL. Specifically, our framework consists of three key steps: multi-scale features cross-fusion, edge mask prediction and edge-supervision localization. Firstly, we input the RGB image and its noise image into a segmentation network to learn multi-scale features, which are then aggregated via a cross-scale fusion followed by a cross-domain fusion to enhance feature representation. Secondly, we design an edge mask prediction module to effectively mine the reliable boundary artifacts. Finally, the cross-fused features and the reliable edge mask information are seamlessly integrated via an attention mechanism to incrementally supervise and facilitate model training. Extensive experiments on publicly available datasets demonstrate that our proposed method is superior to state-of-the-art schemes.
Related papers
- MATCNN: Infrared and Visible Image Fusion Method Based on Multi-scale CNN with Attention Transformer [21.603763071331667]
This paper proposes a novel cross-modal image fusion approach based on a multi-scale convolutional neural network with attention Transformer (MATCNN)
MATCNN utilizes the multi-scale fusion module (MSFM) to extract local features at different scales and employs the global feature extraction module (GFEM) to extract global features.
An information mask is used to label pertinent details within the images, aiming to enhance the proportion of preserving significant information in infrared images and background textures in visible images in fused images.
arXiv Detail & Related papers (2025-02-04T03:09:54Z) - Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.
MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.
MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - CrossDiff: Exploring Self-Supervised Representation of Pansharpening via
Cross-Predictive Diffusion Model [42.39485365164292]
Fusion of a panchromatic (PAN) image and corresponding multispectral (MS) image is also known as pansharpening.
Due to the absence of high-resolution MS images, available deep-learning-based methods usually follow the paradigm of training at reduced resolution and testing at both reduced and full resolution.
We propose to explore the self-supervised representation of pansharpening by designing a cross-predictive diffusion model, named CrossDiff.
arXiv Detail & Related papers (2024-01-10T13:32:47Z) - Accurate and lightweight dehazing via multi-receptive-field non-local
network and novel contrastive regularization [9.90146712189936]
This paper presents a multi-receptive-field non-local network (MRFNLN) for image dehazing.
It is designed as a multi-stream feature attention block (MSFAB) and cross non-local block (CNLB)
It outperforms recent state-of-the-art dehazing methods with less than 1.5 Million parameters.
arXiv Detail & Related papers (2023-09-28T14:59:16Z) - M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient
Object Detection [22.60675416709486]
M$3$Net is an attention network for Salient Object Detection.
Cross-attention approach to achieve the interaction between multilevel features.
Mixed Attention Block aims at modeling context at both global and local levels.
Multilevel supervision strategy to optimize the aggregated feature stage-by-stage.
arXiv Detail & Related papers (2023-09-15T12:46:14Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
Two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference.
This study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion.
The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19% improvement in PSNR for general scenarios and an impressive 23.5% enhancement in misaligned scenarios.
arXiv Detail & Related papers (2023-05-20T17:01:52Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.