Generating Move Smart Contracts based on Concepts
- URL: http://arxiv.org/abs/2412.12513v1
- Date: Tue, 17 Dec 2024 04:07:45 GMT
- Title: Generating Move Smart Contracts based on Concepts
- Authors: Rabimba Karanjai, Sam Blackshear, Lei Xu, Weidong Shi,
- Abstract summary: ConMover is a novel framework that enhances large language models (LLMs)-based code generation for Move.<n>It integrates concept retrieval, planning, coding, and debug agents in an iterative process to refine generated code.
- Score: 4.3764649156831235
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing adoption of formal verification for smart contracts has spurred the development of new verifiable languages like Move. However, the limited availability of training data for these languages hinders effective code generation by large language models (LLMs). This paper presents ConMover, a novel framework that enhances LLM-based code generation for Move by leveraging a knowledge graph of Move concepts and a small set of verified code examples. ConMover integrates concept retrieval, planning, coding, and debugging agents in an iterative process to refine generated code. Evaluations with various open-source LLMs demonstrate substantial accuracy improvements over baseline models. These results underscore ConMover's potential to address low-resource code generation challenges, bridging the gap between natural language descriptions and reliable smart contract development.
Related papers
- Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.
Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.
We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks [1.9198713957364215]
Large Language Models (LLMs) have shown remarkable capabilities in code generation tasks.
They face significant limitations in handling complex, long-context programming challenges.
This paper introduces a novel agentic framework for guided code generation''
arXiv Detail & Related papers (2025-01-11T19:21:53Z) - Chunk-Distilled Language Modeling [25.238256586953487]
Chunk-Distilled Language Modeling (CD-LM) is an approach to text generation that addresses two challenges in current large language models (LLMs)
Our method combines deep network-based LLMs with a straightforward retrieval module, which allows the generation of multi-token text chunks at a single decoding step.
arXiv Detail & Related papers (2024-12-31T08:32:15Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
We propose CodeGRAG, a Graphical Retrieval Augmented Code Generation framework to enhance the performance of LLMs.
CodeGRAG builds the graphical view of code blocks based on the control flow and data flow of them to fill the gap between programming languages and natural language.
Various experiments and ablations are done on four datasets including both the C++ and python languages to validate the hard meta-graph prompt, the soft prompting technique, and the effectiveness of the objectives for pretrained GNN expert.
arXiv Detail & Related papers (2024-05-03T02:48:55Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that embeds additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
Large language models (LLMs)- based code generation is a complex and powerful black-box model.
We propose a novel causal graph-based representation of the prompt and the generated code.
We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies.
arXiv Detail & Related papers (2023-10-10T14:56:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.