Solid-SQL: Enhanced Schema-linking based In-context Learning for Robust Text-to-SQL
- URL: http://arxiv.org/abs/2412.12522v1
- Date: Tue, 17 Dec 2024 04:22:22 GMT
- Title: Solid-SQL: Enhanced Schema-linking based In-context Learning for Robust Text-to-SQL
- Authors: Geling Liu, Yunzhi Tan, Ruichao Zhong, Yuanzhen Xie, Lingchen Zhao, Qian Wang, Bo Hu, Zang Li,
- Abstract summary: Large language models (LLMs) have significantly improved the performance of text-to- systems.
Many state-of-the-art (SOTA) approaches have overlooked the critical aspect of system robustness.
- Score: 13.122218546167463
- License:
- Abstract: Recently, large language models (LLMs) have significantly improved the performance of text-to-SQL systems. Nevertheless, many state-of-the-art (SOTA) approaches have overlooked the critical aspect of system robustness. Our experiments reveal that while LLM-driven methods excel on standard datasets, their accuracy is notably compromised when faced with adversarial perturbations. To address this challenge, we propose a robust text-to-SQL solution, called Solid-SQL, designed to integrate with various LLMs. We focus on the pre-processing stage, training a robust schema-linking model enhanced by LLM-based data augmentation. Additionally, we design a two-round, structural similarity-based example retrieval strategy for in-context learning. Our method achieves SOTA SQL execution accuracy levels of 82.1% and 58.9% on the general Spider and Bird benchmarks, respectively. Furthermore, experimental results show that Solid-SQL delivers an average improvement of 11.6% compared to baselines on the perturbed Spider-Syn, Spider-Realistic, and Dr. Spider benchmarks.
Related papers
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-s enables non-expert users to effortlessly retrieve desired information from databases using natural language queries.
Current state-of-the-art (SOTA) models like GPT4 and T5 have shown impressive performance on large-scale benchmarks like BIRD.
This paper proposed a novel approach that only needs SQL Quality to enhance Text-to-s performance.
arXiv Detail & Related papers (2024-10-02T17:21:51Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to- tasks.
We introduce a synthetic data approach that combines data produced by larger, more powerful models with error information data generated by smaller, not well-aligned models.
arXiv Detail & Related papers (2024-08-06T15:40:32Z) - CodeS: Towards Building Open-source Language Models for Text-to-SQL [42.11113113574589]
We introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B.
CodeS is a fully open language model, which achieves superior accuracy with much smaller parameter sizes.
We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark.
arXiv Detail & Related papers (2024-02-26T07:00:58Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with
Self-Correction [7.388002745070808]
We study how breaking down the generation problem into sub-problems and feeding the solutions of those sub-problems into Large Language Models can be effective.
Our approach with in-context learning beats many heavily fine-tuned models by at least 5%.
arXiv Detail & Related papers (2023-04-21T15:02:18Z) - Dr.Spider: A Diagnostic Evaluation Benchmark towards Text-to-SQL
Robustness [115.66421993459663]
Recent studies reveal that text-to- models are vulnerable to task-specific perturbations.
We propose a comprehensive robustness benchmark based on Spider to diagnose the model.
We conduct a diagnostic study of the state-of-the-art models on the set.
arXiv Detail & Related papers (2023-01-21T03:57:18Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
This paper aims to improve the performance of text-to-dependence by exploring the intrinsic uncertainties in the neural network based approaches (called SUN)
Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms competitors and achieves new state-of-the-art results.
arXiv Detail & Related papers (2022-09-14T06:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.