RAISE: Reasoning Agent for Interactive SQL Exploration
- URL: http://arxiv.org/abs/2506.01273v1
- Date: Mon, 02 Jun 2025 03:07:08 GMT
- Title: RAISE: Reasoning Agent for Interactive SQL Exploration
- Authors: Fernando Granado, Roberto Lotufo, Jayr Pereira,
- Abstract summary: We propose a novel framework that unifies schema linking, query generation, and iterative refinement within a single, end-to-end component.<n>Our method emulates how humans answer questions when working with unfamiliar databases.
- Score: 47.77323087050061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have propelled research in natural language interfaces to databases. However, most state-of-the-art text-to-SQL systems still depend on complex, multi-stage pipelines. This work proposes a novel agentic framework that unifies schema linking, query generation, and iterative refinement within a single, end-to-end component. By leveraging the intrinsic reasoning abilities of LLMs, our method emulates how humans answer questions when working with unfamiliar databases: understanding the data by formulating hypotheses, running dynamic queries to validate them, reasoning over the results, and revising outputs based on observed results. Crucially, our approach introduces a new strategy for scaling test-time computation in text-to-SQL: we scale the depth of interactive database exploration and reflection. This shift enables the model to allocate computation dynamically to better understand the data, especially useful in ambiguous and underspecified scenarios. Our experiments show that it improved the Execution Accuracy (EX) from 44.8% to 56.5% on the challenging BIRD dataset using DeepSeek-R1-Distill-Llama-70B. Furthermore, when equipped with steps to add more diversity to the answers, our agent achieves a Best-of-N accuracy of 81.8% with 8 rounds of candidate generation, rivaling the 82.79% achieved by the top-ranked published solution, while reducing engineering complexity. These findings position our unified framework as a promising alternative for building natural language interfaces to databases.
Related papers
- Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
We introduce the Text-to-No task, which aims to convert natural language queries into accessible queries.<n>To promote research in this area, we released a large-scale and open-source dataset for this task, named TEND (short interfaces for Text-to-No dataset)<n>We also designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-No conversion.
arXiv Detail & Related papers (2025-02-16T17:01:48Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
We introduce E-Seek, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation.<n>E-Seek enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question andsql construction plan, bridging the gap between the query and the database structure.<n> Comprehensive evaluations illustrate that E-Seek achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set.
arXiv Detail & Related papers (2024-09-25T09:02:48Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL [0.0]
We utilize OpenAI's GPT-4 model within a retrieval-augmented generation (RAG) framework.
Business context document is enriched with a business context document, to transform NLQs into Structured Query Language queries.
Performance achieved a maximum of 85% when high complexity queries are excluded.
arXiv Detail & Related papers (2024-06-15T17:07:31Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
We introduce CHESS, a framework for efficient and scalable text-to- queries.
It comprises four specialized agents, each targeting one of the aforementioned challenges.
Our framework offers features that adapt to various deployment constraints.
arXiv Detail & Related papers (2024-05-27T01:54:16Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
Large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to- tasks.
This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers.
We establish a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
arXiv Detail & Related papers (2024-05-13T04:59:32Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - xDBTagger: Explainable Natural Language Interface to Databases Using
Keyword Mappings and Schema Graph [0.17188280334580192]
Translating natural language queries into structured query language (NLQ) in interfaces to relational databases is a challenging task.
We propose xDBTagger, an explainable hybrid translation pipeline that explains the decisions made along the way to the user both textually and visually.
xDBTagger is effective in terms of accuracy and translates the queries more efficiently compared to other state-of-the-art pipeline-based systems up to 10000 times.
arXiv Detail & Related papers (2022-10-07T18:17:09Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
This paper aims to improve the performance of text-to-dependence by exploring the intrinsic uncertainties in the neural network based approaches (called SUN)
Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms competitors and achieves new state-of-the-art results.
arXiv Detail & Related papers (2022-09-14T06:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.