Fault-tolerant Quantum Computation without Distillation on a 2D Device
- URL: http://arxiv.org/abs/2412.12529v2
- Date: Fri, 14 Feb 2025 07:38:26 GMT
- Title: Fault-tolerant Quantum Computation without Distillation on a 2D Device
- Authors: Thomas R. Scruby, Kae Nemoto, Zhenyu Cai,
- Abstract summary: We show how looped pipeline architectures can be used to implement the fault-tolerant non-Clifford gate between 2D surface codes.
The shuttling schedule needed to implement this gate is only marginally more complex than is required for implementing the standard 2D surface code.
- Score: 0.0
- License:
- Abstract: We show how looped pipeline architectures - which use short-range shuttling of physical qubits to achieve a finite amount of non-local connectivity - can be used to efficiently implement the fault-tolerant non-Clifford gate between 2D surface codes described in (Sci. Adv. 6, eaay4929 (2020)). The shuttling schedule needed to implement this gate is only marginally more complex than is required for implementing the standard 2D surface code in this architecture. We compare the resource cost of this operation with the cost of magic state distillation and find that, at present, this comparison is heavily in favour of distillation. The high cost of the non-Clifford gate is almost entirely due to the relatively low performance of the just-in-time decoder used as part of this process, which necessitates very large code distances in order to achieve suitably low logical error rates. We argue that, as very little attention has previously been given to the study and optimisation of these decoders, there are potentially significant improvements to be made in this area.
Related papers
- Toward a 2D Local Implementation of Quantum LDPC Codes [1.1936126505067601]
Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes.
We present an error correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates.
arXiv Detail & Related papers (2024-04-26T19:48:07Z) - Towards early fault tolerance on a 2$\times$N array of qubits equipped with shuttling [0.0]
Two-dimensional grid of locally-interacting qubits is promising platform for fault tolerant quantum computing.
In this paper, we show that such constrained architectures can also support fault tolerance.
We demonstrate that error correction is possible and identify the classes of codes that are naturally suited to this platform.
arXiv Detail & Related papers (2024-02-19T23:31:55Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
We design an optimized conformer that is small enough to meet on-device restrictions and has fast inference on TPUs.
Our proposed encoder can double as a strong standalone encoder in on device, and as the first part of a high-performance ASR pipeline.
arXiv Detail & Related papers (2023-03-31T23:30:48Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
We present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder.
Our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods.
arXiv Detail & Related papers (2022-10-23T00:32:04Z) - Looped Pipelines Enabling Effective 3D Qubit Lattices in a Strictly 2D Device [0.0]
We explore a concept called looped pipelines which permits one to obtain many of the advantages of a 3D lattice while operating a strictly 2D device.
The concept leverages qubit shuttling, a well-established feature in platforms like semiconductor spin qubits and trapped-ion qubits.
arXiv Detail & Related papers (2022-03-24T15:36:17Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.