Correlated decoding of logical algorithms with transversal gates
- URL: http://arxiv.org/abs/2403.03272v2
- Date: Mon, 07 Apr 2025 16:29:51 GMT
- Title: Correlated decoding of logical algorithms with transversal gates
- Authors: Madelyn Cain, Chen Zhao, Hengyun Zhou, Nadine Meister, J. Pablo Bonilla Ataides, Arthur Jaffe, Dolev Bluvstein, Mikhail D. Lukin,
- Abstract summary: We show that logical algorithms can be substantially improved by decoding qubits jointly to account for error propagation during entangling gates.<n>We numerically verify that this approach substantially reduces the space-time cost of deep logical Clifford circuits.
- Score: 3.6520503393751524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates (Bluvstein et al., Nature 626, 58-65 (2024)), we show that the performance of logical algorithms can be substantially improved by decoding the qubits jointly to account for error propagation during transversal entangling gates. We find that such correlated decoding improves the performance of both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering different computational runtimes and accuracies. In particular, by leveraging the deterministic propagation of stabilizer measurement errors through transversal Clifford gates, we find that correlated decoding enables the number of noisy syndrome extraction rounds between these gates to be reduced from $O(d)$ to $O(1)$ in Clifford circuits, where $d$ is the code distance. We verify numerically that this approach substantially reduces the space-time cost of deep logical Clifford circuits. These results demonstrate that correlated decoding provides a major advantage in early fault-tolerant computation, as realized in recent experiments, and further indicate it has considerable potential to reduce the space-time cost in large-scale logical algorithms.
Related papers
- Low-overhead error detection with spacetime codes [1.3689968346415426]
We introduce a low-overhead approach for detecting errors in arbitrary Clifford circuits on arbitrary qubit connectivities.
We show our algorithm can efficiently find checks in universal circuits, but the space of valid checks diminishes exponentially with the non-Cliffordness of the circuit.
arXiv Detail & Related papers (2025-04-22T09:20:25Z) - Fault-tolerant Quantum Computation without Distillation on a 2D Device [0.0]
We show how looped pipeline architectures can be used to implement the fault-tolerant non-Clifford gate between 2D surface codes.
The shuttling schedule needed to implement this gate is only marginally more complex than is required for implementing the standard 2D surface code.
arXiv Detail & Related papers (2024-12-17T04:38:49Z) - Integrating Window-Based Correlated Decoding with Constant-Time Logical Gates for Large-Scale Quantum Computation [11.657137510701165]
One crucial issue of fault-tolerant quantum computing is reducing the overhead of implementing gates.
Recently proposed correlated decoding and algorithmic fault tolerance" achieve fast universality gates.
This approach is incompatible with window-based decoding, which is a natural requirement for handling large-scale circuits.
arXiv Detail & Related papers (2024-10-22T12:44:41Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - High Precision Fault-Tolerant Quantum Circuit Synthesis by Diagonalization using Reinforcement Learning [0.8341988468339112]
Empirical search-based synthesis methods can generate good implementations for a more extensive set of unitaries.
We leverage search-based methods to reduce the general unitary synthesis problem to one of diagonal unitaries.
On a subset of algorithms of interest for future term applications, diagonalization can reduce T gate counts by up to 16.8%.
arXiv Detail & Related papers (2024-08-31T12:10:32Z) - Error correction of transversal CNOT gates for scalable surface code computation [0.37282630026096597]
A controlled-NOT (tCNOT) gate introduces correlated errors across the code blocks.
We examine and benchmark the performance of three different decoding strategies for the tC for scalable, fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-08-02T17:09:08Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Hardness of braided quantum circuit optimization in the surface code [0.1759008116536278]
Large-scale quantum information processing requires the use of quantum error codes to mitigate the effects of noise in quantum devices.
Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits.
However, error correction also introduces a significant overhead in time, the number of physical qubits, and the number of physical gates.
arXiv Detail & Related papers (2023-02-01T06:35:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Simulating quench dynamics on a digital quantum computer with
data-driven error mitigation [62.997667081978825]
We present one of the first implementations of several Clifford data regression based methods which are used to mitigate the effect of noise in real quantum data.
We find in general Clifford data regression based techniques are advantageous in comparison with zero-noise extrapolation.
This is the largest systems investigated so far in a study of this type.
arXiv Detail & Related papers (2021-03-23T16:56:14Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.