Process-Supervised Reward Models for Verifying Clinical Note Generation: A Scalable Approach Guided by Domain Expertise
- URL: http://arxiv.org/abs/2412.12583v2
- Date: Sat, 15 Feb 2025 16:54:49 GMT
- Title: Process-Supervised Reward Models for Verifying Clinical Note Generation: A Scalable Approach Guided by Domain Expertise
- Authors: Hanyin Wang, Chufan Gao, Qiping Xu, Bolun Liu, Guleid Hussein, Hariprasad Korsapati, Mohamad El Labban, Kingsley Iheasirim, Mohamed Hassan, Gokhan Anil, Brian Bartlett, Jimeng Sun,
- Abstract summary: We train a PRM to provide step-level reward signals for clinical notes generated by large language models (LLM)
Our proposed PRM, trained on the LLaMA-3.1 8B instruct model, outperformed both Gemini-Pro 1.5 and the vanilla outcome-supervised reward model (ORM) in two key evaluations.
- Score: 19.71388941192149
- License:
- Abstract: Process-supervised reward models (PRMs), which verify large language model (LLM) outputs step-by-step, have achieved significant success in mathematical and coding problems. However, their application to other domains remains largely unexplored. In this work, we train a PRM to provide step-level reward signals for clinical notes generated by LLMs from patient-doctor dialogues. Guided by real-world clinician expertise, we carefully designed step definitions for clinical notes and utilized Gemini-Pro 1.5 to automatically generate process supervision data at scale. Our proposed PRM, trained on the LLaMA-3.1 8B instruct model, outperformed both Gemini-Pro 1.5 and the vanilla outcome-supervised reward model (ORM) in two key evaluations: (1) selecting gold-reference samples from error-containing ones, achieving 98.8% accuracy (versus 70.0% for the vanilla ORM and 93.8% for Gemini-Pro 1.5), and (2) selecting physician-preferred notes, achieving 56.2% accuracy (compared to 37.5% for the vanilla ORM and 50.0% for Gemini-Pro 1.5). Additionally, we conducted ablation studies to determine optimal loss functions and data selection strategies, along with physician reader studies to explore predictors of downstream Best-of-N performance. Our promising results suggest the potential of PRMs to extend beyond the clinical domain, offering a scalable and effective solution for diverse generative tasks.
Related papers
- LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison [3.2627279988912194]
Large Language Models (LLMs) have revolutionized various domains, but their potential in pharmaceutical research remains largely unexplored.
This study thoroughly investigates LLMs' capabilities in predicting drug-drug interactions (DDIs)
We evaluated 18 different LLMs, including proprietary models (GPT-4, Claude, Gemini) and open-source variants (from 1.5B to 72B parameters)
Fine-tuned LLMs demonstrated superior performance, with Phi-3.5 2.7B achieving a sensitivity of 0.978 in DDI prediction, with an accuracy of 0.919 on balanced datasets.
arXiv Detail & Related papers (2025-02-09T09:58:12Z) - Fine-Tuning Open-Source Large Language Models to Improve Their Performance on Radiation Oncology Tasks: A Feasibility Study to Investigate Their Potential Clinical Applications in Radiation Oncology [23.986096971629777]
Large language models have displayed remarkable capabilities in processing complex text information.
This study aims to investigate whether fine-tuning LLMs with domain knowledge can improve the performance on Task.
One-sided Wilcoxon signed-rank tests were used to statistically analyze the results.
arXiv Detail & Related papers (2025-01-28T20:37:32Z) - Preference Optimization for Reasoning with Pseudo Feedback [100.62603571434167]
We introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions as an evaluation against associated test cases.
We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks.
arXiv Detail & Related papers (2024-11-25T12:44:02Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
We propose a simple, effective, and data-efficient method called Step-DPO.
Step-DPO treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically.
Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters.
arXiv Detail & Related papers (2024-06-26T17:43:06Z) - How Easy is It to Fool Your Multimodal LLMs? An Empirical Analysis on Deceptive Prompts [54.07541591018305]
We present MAD-Bench, a benchmark that contains 1000 test samples divided into 5 categories, such as non-existent objects, count of objects, and spatial relationship.
We provide a comprehensive analysis of popular MLLMs, ranging from GPT-4v, Reka, Gemini-Pro, to open-sourced models, such as LLaVA-NeXT and MiniCPM-Llama3.
While GPT-4o achieves 82.82% accuracy on MAD-Bench, the accuracy of any other model in our experiments ranges from 9% to 50%.
arXiv Detail & Related papers (2024-02-20T18:31:27Z) - Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision [40.984680166762345]
We introduce Model-induced Process Supervision (MiPS), a novel method for automating data curation.
MiPS annotates an intermediate step by sampling completions of this solution through the reasoning model, and obtaining an accuracy defined as the proportion of correct completions.
Our approach significantly improves the performance of PaLM 2 on math and coding tasks.
arXiv Detail & Related papers (2024-02-05T00:57:51Z) - Improving Large Language Models for Clinical Named Entity Recognition
via Prompt Engineering [20.534197056683695]
This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks.
We developed a task-specific prompt framework that includes baseline prompts, annotation guideline-based prompts, error analysis-based instructions, and annotated samples.
We assessed each prompt's effectiveness and compared the models to BioClinicalBERT.
arXiv Detail & Related papers (2023-03-29T02:46:18Z) - AD-BERT: Using Pre-trained contextualized embeddings to Predict the
Progression from Mild Cognitive Impairment to Alzheimer's Disease [14.59521645987661]
We develop a deep learning framework based on the pre-trained Bidirectional Representations from Transformers (BERT) model.
We predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) using unstructured clinical notes.
arXiv Detail & Related papers (2022-11-07T04:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.