LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison
- URL: http://arxiv.org/abs/2502.06890v1
- Date: Sun, 09 Feb 2025 09:58:12 GMT
- Title: LLMs for Drug-Drug Interaction Prediction: A Comprehensive Comparison
- Authors: Gabriele De Vito, Filomena Ferrucci, Athanasios Angelakis,
- Abstract summary: Large Language Models (LLMs) have revolutionized various domains, but their potential in pharmaceutical research remains largely unexplored.
This study thoroughly investigates LLMs' capabilities in predicting drug-drug interactions (DDIs)
We evaluated 18 different LLMs, including proprietary models (GPT-4, Claude, Gemini) and open-source variants (from 1.5B to 72B parameters)
Fine-tuned LLMs demonstrated superior performance, with Phi-3.5 2.7B achieving a sensitivity of 0.978 in DDI prediction, with an accuracy of 0.919 on balanced datasets.
- Score: 3.2627279988912194
- License:
- Abstract: The increasing volume of drug combinations in modern therapeutic regimens needs reliable methods for predicting drug-drug interactions (DDIs). While Large Language Models (LLMs) have revolutionized various domains, their potential in pharmaceutical research, particularly in DDI prediction, remains largely unexplored. This study thoroughly investigates LLMs' capabilities in predicting DDIs by uniquely processing molecular structures (SMILES), target organisms, and gene interaction data as raw text input from the latest DrugBank dataset. We evaluated 18 different LLMs, including proprietary models (GPT-4, Claude, Gemini) and open-source variants (from 1.5B to 72B parameters), first assessing their zero-shot capabilities in DDI prediction. We then fine-tuned selected models (GPT-4, Phi-3.5 2.7B, Qwen-2.5 3B, Gemma-2 9B, and Deepseek R1 distilled Qwen 1.5B) to optimize their performance. Our comprehensive evaluation framework included validation across 13 external DDI datasets, comparing against traditional approaches such as l2-regularized logistic regression. Fine-tuned LLMs demonstrated superior performance, with Phi-3.5 2.7B achieving a sensitivity of 0.978 in DDI prediction, with an accuracy of 0.919 on balanced datasets (50% positive, 50% negative cases). This result represents an improvement over both zero-shot predictions and state-of-the-art machine-learning methods used for DDI prediction. Our analysis reveals that LLMs can effectively capture complex molecular interaction patterns and cases where drug pairs target common genes, making them valuable tools for practical applications in pharmaceutical research and clinical settings.
Related papers
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy [0.0]
We introduce ADEP, a novel approach integrating a discriminator and an encoder-decoder model to address data sparsity and enhance feature extraction.
ADEP employs a three-part model, including multiple classification methods, to predict adverse effects in polypharmacy.
arXiv Detail & Related papers (2024-05-31T18:20:17Z) - Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey [22.73437302209673]
We review and quantitatively analyze recent deep learning methods based on various benchmarks.
We find that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks.
We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%.
arXiv Detail & Related papers (2024-02-11T17:29:58Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves.
Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects.
We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures.
arXiv Detail & Related papers (2020-12-24T13:33:07Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.