Asymmetric protocols for mode pairing quantum key distribution with finite-key analysis
- URL: http://arxiv.org/abs/2412.12593v2
- Date: Fri, 27 Dec 2024 01:20:51 GMT
- Title: Asymmetric protocols for mode pairing quantum key distribution with finite-key analysis
- Authors: Zhenhua Li, Tianqi Dou, Yuheng Xie, Weiwen Kong, Yang Liu, Haiqiang Ma, Jianjun Tang,
- Abstract summary: We conduct a security analysis of asymmetric MP-QKD protocol with the finite-key analysis.
Our work can achieve significantly enhanced secure key rates and transmission distances compared to the original strategy.
- Score: 5.323964523588455
- License:
- Abstract: The mode pairing quantum key distribution (MP-QKD) protocol has attracted considerable attention for its capability to ensure high secure key rates over long distances without requiring global phase locking. However, ensuring symmetric channels for the MP-QKD protocol is challenging in practical quantum communication networks. Previous studies on the asymmetric MP-QKD protocol have relied on ideal decoy state assumptions and infinite-key analysis, which are unattainable for real-world deployment. In this paper, we conduct a security analysis of asymmetric MP-QKD protocol with the finite-key analysis, where we discard the previously impractical assumptions made in the decoy-state method. Combined with statistical fluctuation analysis, we globally optimized the 12 independent parameters in the asymmetric MP-QKD protocol by employing our modified particle swarm optimization. The simulation results demonstrate that our work can achieve significantly enhanced secure key rates and transmission distances compared to the original strategy with adding extra attenuation. We further investigate the relationship between the intensities and probabilities of signal, decoy, and vacuum states with transmission distance, facilitating its more efficient deployment in future quantum networks.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Asymmetric mode-pairing quantum key distribution [4.122493139863035]
Mode-pairing quantum key distribution (MP-QKD) can surpass the repeaterless rate-transmittance bound without requiring global phase locking.
MP-QKD necessitates equal communication distances in two channels, which is a challenging requirement in practical applications.
We introduce an optimal-pulse-intensity method, adaptable to various scenarios, to enhance key rates by calculating ideal pulse intensities.
arXiv Detail & Related papers (2024-01-03T13:06:29Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Finite-key Analysis for Quantum Conference Key Agreement with Asymmetric
Channels [12.576252829963096]
Quantum conference key agreement (QCKA) provides unconditional secret keys among multiple parties.
Some QCKA protocols employing twin-field was proposed to promote transmission distance.
Here, we consider a tripartite QCKA protocol utilizing the idea of sending-or-not-sending twin-field scheme.
arXiv Detail & Related papers (2021-09-23T06:36:31Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Dimension Reduction in Quantum Key Distribution for Continuous- and
Discrete-Variable Protocols [3.749120127914018]
We develop a method to connect the infinite-dimensional description of optical continuous-variable key distribution protocols to a finite-dimensional formulation.
The secure key rates of quantum optical QKD protocols can then be evaluated using recently-developed reliable numerical methods for key rate calculations.
arXiv Detail & Related papers (2021-01-14T18:59:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.