論文の概要: Auto-Cypher: Improving LLMs on Cypher generation via LLM-supervised generation-verification framework
- arxiv url: http://arxiv.org/abs/2412.12612v2
- Date: Fri, 24 Jan 2025 05:52:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:31.904750
- Title: Auto-Cypher: Improving LLMs on Cypher generation via LLM-supervised generation-verification framework
- Title(参考訳): Auto-Cypher: LLM制御ジェネレーション検証フレームワークによるCypher生成におけるLCMの改善
- Authors: Aman Tiwari, Shiva Krishna Reddy Malay, Vikas Yadav, Masoud Hashemi, Sathwik Tejaswi Madhusudhan,
- Abstract要約: 我々は,Text2Cypherの高品質な合成データを生成するための,自動LLMスーパービジョンパイプラインを提案する。
私たちのCypherデータ生成パイプラインは、Cypherクエリの正確性を保証するための新しい戦略であるLLM-As-Database-Fillerを導入しています。
パイプラインを使用して、高品質なText2Cypherデータを生成します。SynthCypherには、さまざまなドメインにわたる29.8kインスタンスと、さまざまな複雑さを持つクエリが含まれています。
- 参考スコア(独自算出の注目度): 4.080333216826685
- License:
- Abstract: Graph databases like Neo4j are gaining popularity for handling complex, interconnected data, over traditional relational databases in modeling and querying relationships. While translating natural language into SQL queries is well-researched, generating Cypher queries for Neo4j remains relatively underexplored. In this work, we present an automated, LLM-Supervised, pipeline to generate high-quality synthetic data for Text2Cypher. Our Cypher data generation pipeline introduces LLM-As-Database-Filler, a novel strategy for ensuring Cypher query correctness, thus resulting in high quality generations. Using our pipeline, we generate high quality Text2Cypher data - SynthCypher containing 29.8k instances across various domains and queries with varying complexities. Training open-source LLMs like LLaMa-3.1-8B, Mistral-7B, and QWEN-7B on SynthCypher results in performance gains of up to 40% on the Text2Cypher test split and 30% on the SPIDER benchmark, adapted for graph databases.
- Abstract(参考訳): Neo4jのようなグラフデータベースは、モデリングやクエリ関係において、従来のリレーショナルデータベースよりも複雑で相互接続されたデータを扱うことで人気を集めています。
自然言語をSQLクエリに翻訳することはよく研究されているが、Neo4j用のCypherクエリの生成はいまだにあまり研究されていない。
本研究では,Text2Cypher の高品質な合成データを生成するための,LLM-Supervised パイプラインを提案する。
私たちのCypherデータ生成パイプラインでは,Cypherクエリの正確性を保証する新たな戦略であるLLM-As-Database-Fillerを導入しています。
パイプラインを使用して、高品質なText2Cypherデータを生成します。SynthCypherには、さまざまなドメインにわたる29.8kインスタンスと、さまざまな複雑さを持つクエリが含まれています。
LLaMa-3.1-8B、Mistral-7B、QWEN-7BといったオープンソースのLLMをSynthCypher上でトレーニングすると、Text2Cypherテストの分割で40%、SPIDERベンチマークで30%のパフォーマンス向上がグラフデータベースに適応する。
関連論文リスト
- Towards Evaluating Large Language Models for Graph Query Generation [49.49881799107061]
大言語モデル(LLM)は、生成人工知能(GenAI)の景観に革命をもたらしている
本稿では,オープンアクセス LLM を用いてグラフデータベースと対話する強力な言語としてクエリを生成することの課題について比較検討する。
クエリ生成精度を実証的に分析したところ、Claude Sonnet 3.5は特定のドメインでそれよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-13T09:11:56Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - SyntheT2C: Generating Synthetic Data for Fine-Tuning Large Language Models on the Text2Cypher Task [4.556106845296017]
自然言語のCypherクエリへの翻訳を自動化することにより,Large Language ModelsとKnowledge Graphデータベースを接続することが重要である。
本研究では,合成クエリとCypherのペアデータセットを構築する手法であるSyntheT2Cを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:43:49Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
最近のText-to-Yourselfメソッドは通常、"巨大な"データベース上での大幅なパフォーマンス劣化に悩まされる。
我々は,新しいテキスト・ツー・ユー・セルフ LLM ベースのマルチエージェント協調フレームワーク MAC を紹介する。
我々のフレームワークでは、GPT-4を全てのエージェントタスクの強力なバックボーンとして利用し、フレームワークの上限を決定する。
次に、Code 7Bを活用することで、オープンソースの命令フォローモデルであるsql-Llamaを微調整し、GPT-4のように全てのタスクを達成します。
論文 参考訳(メタデータ) (2023-12-18T14:40:20Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。