ASAP: Advancing Semantic Alignment Promotes Multi-Modal Manipulation Detecting and Grounding
- URL: http://arxiv.org/abs/2412.12718v1
- Date: Tue, 17 Dec 2024 09:33:06 GMT
- Title: ASAP: Advancing Semantic Alignment Promotes Multi-Modal Manipulation Detecting and Grounding
- Authors: Zhenxing Zhang, Yaxiong Wang, Lechao Cheng, Zhun Zhong, Dan Guo, Meng Wang,
- Abstract summary: We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4)<n>We observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding.<n>We utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs.
- Score: 44.512534064952206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
Related papers
- Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement [52.15627062770557]
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods.
Recent approaches in image manipulation detection have largely been driven by fully supervised approaches.
We present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture.
arXiv Detail & Related papers (2025-03-26T07:35:09Z) - Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations [2.992602379681373]
We show that multi-modal fine-tuning can achieve notable OoDD performance.
We propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data.
arXiv Detail & Related papers (2025-03-24T16:00:21Z) - ForgerySleuth: Empowering Multimodal Large Language Models for Image Manipulation Detection [107.86009509291581]
We propose ForgerySleuth to perform comprehensive clue fusion and generate segmentation outputs indicating regions that are tampered with.<n>Our experiments demonstrate the effectiveness of ForgeryAnalysis and show that ForgerySleuth significantly outperforms existing methods in robustness, generalization, and explainability.
arXiv Detail & Related papers (2024-11-29T04:35:18Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
We highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM4)
DGM4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content.
We propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities.
arXiv Detail & Related papers (2023-09-25T15:05:46Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Detecting and Grounding Multi-Modal Media Manipulation [32.34908534582532]
We highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM4)
DGM4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content.
We propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities.
arXiv Detail & Related papers (2023-04-05T16:20:40Z) - Detecting Human-Object Interactions with Object-Guided Cross-Modal
Calibrated Semantics [6.678312249123534]
We aim to boost end-to-end models with object-guided statistical priors.
We propose to utilize a Verb Semantic Model (VSM) and use semantic aggregation to profit from this object-guided hierarchy.
The above modules combined composes Object-guided Cross-modal Network (OCN)
arXiv Detail & Related papers (2022-02-01T07:39:04Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.