RCTrans: Radar-Camera Transformer via Radar Densifier and Sequential Decoder for 3D Object Detection
- URL: http://arxiv.org/abs/2412.12799v1
- Date: Tue, 17 Dec 2024 11:02:36 GMT
- Title: RCTrans: Radar-Camera Transformer via Radar Densifier and Sequential Decoder for 3D Object Detection
- Authors: Yiheng Li, Yang Yang, Zhen Lei,
- Abstract summary: In radar-camera 3D object detection, the radar point clouds are sparse and noisy.
We introduce a novel query-based detection method named Radar-Pruning Transformer (RCTrans)
Our method achieves new state-of-the-art radar-camera 3D detection results.
- Score: 16.37397687985041
- License:
- Abstract: In radar-camera 3D object detection, the radar point clouds are sparse and noisy, which causes difficulties in fusing camera and radar modalities. To solve this, we introduce a novel query-based detection method named Radar-Camera Transformer (RCTrans). Specifically, we first design a Radar Dense Encoder to enrich the sparse valid radar tokens, and then concatenate them with the image tokens. By doing this, we can fully explore the 3D information of each interest region and reduce the interference of empty tokens during the fusing stage. We then design a Pruning Sequential Decoder to predict 3D boxes based on the obtained tokens and random initialized queries. To alleviate the effect of elevation ambiguity in radar point clouds, we gradually locate the position of the object via a sequential fusion structure. It helps to get more precise and flexible correspondences between tokens and queries. A pruning training strategy is adopted in the decoder, which can save much time during inference and inhibit queries from losing their distinctiveness. Extensive experiments on the large-scale nuScenes dataset prove the superiority of our method, and we also achieve new state-of-the-art radar-camera 3D detection results. Our implementation is available at https://github.com/liyih/RCTrans.
Related papers
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.
Radar suffers from noise and positional ambiguity.
We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - RCBEVDet: Radar-camera Fusion in Bird's Eye View for 3D Object Detection [33.07575082922186]
Three-dimensional object detection is one of the key tasks in autonomous driving.
relying solely on cameras is difficult to achieve highly accurate and robust 3D object detection.
radar-camera fusion 3D object detection method in the bird's eye view (BEV)
RadarBEVNet consists of a dual-stream radar backbone and a Radar Cross-Section (RC) aware BEV encoder.
arXiv Detail & Related papers (2024-03-25T06:02:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
We propose a novel Fusion network by Box Matching (FBMNet) for multi-modal 3D detection.
With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features.
arXiv Detail & Related papers (2023-05-12T18:08:51Z) - TransCAR: Transformer-based Camera-And-Radar Fusion for 3D Object
Detection [13.986963122264633]
TransCAR is a Transformer-based Camera-And-Radar fusion solution for 3D object detection.
Our model estimates a bounding box per query using set-to-set Hungarian loss.
arXiv Detail & Related papers (2023-04-30T05:35:03Z) - CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for
Robust 3D Object Detection [12.557361522985898]
We propose a camera-radar matching network CramNet to fuse the sensor readings from camera and radar in a joint 3D space.
Our method supports training with sensor modality dropout, which leads to robust 3D object detection, even when a camera or radar sensor suddenly malfunctions on a vehicle.
arXiv Detail & Related papers (2022-10-17T17:18:47Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - RODNet: Radar Object Detection Using Cross-Modal Supervision [34.33920572597379]
Radar is usually more robust than the camera in severe driving scenarios.
Unlike RGB images captured by a camera, semantic information from the radar signals is noticeably difficult to extract.
We propose a deep radar object detection network (RODNet) to effectively detect objects purely from the radar frequency data.
arXiv Detail & Related papers (2020-03-03T22:33:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.