論文の概要: ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing
- arxiv url: http://arxiv.org/abs/2412.12821v1
- Date: Tue, 17 Dec 2024 11:41:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:34.545187
- Title: ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing
- Title(参考訳): ComprehendEdit:マルチモーダル知識編集のための総合的データセット評価フレームワーク
- Authors: Yaohui Ma, Xiaopeng Hong, Shizhou Zhang, Huiyun Li, Zhilin Zhu, Wei Luo, Zhiheng Ma,
- Abstract要約: 大規模マルチモーダル言語モデル(MLLM)は、自然言語処理と視覚的理解に革命をもたらした。
現在の知識編集評価はスコープが限られており、バイアスがある可能性がある。
複数のデータセットから8つのタスクからなる総合的なベンチマークであるComprehendEditを紹介する。
- 参考スコア(独自算出の注目度): 27.034072044001736
- License:
- Abstract: Large multimodal language models (MLLMs) have revolutionized natural language processing and visual understanding, but often contain outdated or inaccurate information. Current multimodal knowledge editing evaluations are limited in scope and potentially biased, focusing on narrow tasks and failing to assess the impact on in-domain samples. To address these issues, we introduce ComprehendEdit, a comprehensive benchmark comprising eight diverse tasks from multiple datasets. We propose two novel metrics: Knowledge Generalization Index (KGI) and Knowledge Preservation Index (KPI), which evaluate editing effects on in-domain samples without relying on AI-synthetic samples. Based on insights from our framework, we establish Hierarchical In-Context Editing (HICE), a baseline method employing a two-stage approach that balances performance across all metrics. This study provides a more comprehensive evaluation framework for multimodal knowledge editing, reveals unique challenges in this field, and offers a baseline method demonstrating improved performance. Our work opens new perspectives for future research and provides a foundation for developing more robust and effective editing techniques for MLLMs. The ComprehendEdit benchmark and implementation code are available at https://github.com/yaohui120/ComprehendEdit.
- Abstract(参考訳): 大規模なマルチモーダル言語モデル(MLLM)は、自然言語処理と視覚的理解に革命をもたらしたが、しばしば時代遅れまたは不正確な情報を含んでいる。
現在のマルチモーダル知識編集評価はスコープに限られており、狭いタスクに集中し、ドメイン内のサンプルへの影響を評価するのに失敗する可能性がある。
これらの問題に対処するために、複数のデータセットから8つの多様なタスクからなる包括的なベンチマークであるComprehendEditを紹介した。
本稿では,知識一般化指数(KGI)と知識保存指数(KPI)の2つの新しい指標を提案する。
フレームワークからの洞察に基づいて、すべてのメトリクスのパフォーマンスのバランスをとる2段階のアプローチを採用したベースラインメソッドである階層型In-Context Editing(HICE)を確立します。
本研究は,マルチモーダル知識編集のためのより包括的な評価フレームワークを提供し,この分野での独特な課題を明らかにし,改良された性能を示すベースライン手法を提供する。
今後の研究に向けた新たな視点を開拓し,MLLMのより堅牢で効果的な編集技術開発のための基盤を提供する。
ComprehendEditベンチマークと実装コードはhttps://github.com/yaohui120/ComprehendEditで公開されている。
関連論文リスト
- Knowledge Editing through Chain-of-Thought [12.270274049887298]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクにまたがる例外的な機能を示している。
これらのモデルを世界知識の進化とともに最新に保つことは、頻繁な再トレーニングのコストが高いため、依然として大きな課題である。
本研究では,リトレーニングを伴わずに,様々なタスクにまたがるLSMを柔軟かつ効率的に更新する新しい知識編集フレームワークEditCoTを提案する。
論文 参考訳(メタデータ) (2024-12-23T17:17:50Z) - Visual-Oriented Fine-Grained Knowledge Editing for MultiModal Large Language Models [22.26930296101678]
既存の知識編集は、主にテキスト指向で粗いシナリオに焦点を当てている。
本稿では,複数の対話型エンティティを持つ画像の正確な編集をターゲットとした,視覚指向できめ細かなマルチモーダル知識編集タスクを提案する。
論文 参考訳(メタデータ) (2024-11-19T14:49:36Z) - Cross-Lingual Multi-Hop Knowledge Editing [53.028586843468915]
言語横断的な設定で様々なSoTA知識編集技術の性能を計測・解析するための多言語多言語知識編集パラダイムを提案する。
具体的には、知識編集能力を測定するために並列言語間ベンチマーク CROLIN-MQUAKE を作成します。
次に,言語間マルチホップ知識編集システムであるCLEVER-CKEを提案する。
論文 参考訳(メタデータ) (2024-07-14T17:18:16Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge
Editing [21.760293271882997]
マルチモーダル知識編集は、マルチモーダル大言語モデル(MLLM)の能力向上における重要な進歩である
現在のベンチマークは主に粗粒度知識に焦点が当てられており、細粒度(FG)マルチモーダル実体知識の複雑さはほとんど解明されていない。
このギャップを埋めるために、我々はFGマルチモーダルエンティティ知識編集用に特別に設計された総合的なベンチマークとデータセットであるMIKEを紹介する。
論文 参考訳(メタデータ) (2024-02-18T07:15:03Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVAは、MLLMの知覚能力を改善するためにピクセル、地域、グローバル機能を統合する革新的な統合マルチタスクフレームワークである。
この研究は、277Kサンプルからなるマスクベースの新しいマルチタスクデータセットに貢献し、MLLMの微粒化知覚能力に挑戦し評価する。
論文 参考訳(メタデータ) (2023-11-09T13:18:27Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。