Concurrent vertical and horizontal federated learning with fuzzy cognitive maps
- URL: http://arxiv.org/abs/2412.12844v1
- Date: Tue, 17 Dec 2024 12:11:14 GMT
- Title: Concurrent vertical and horizontal federated learning with fuzzy cognitive maps
- Authors: Jose L Salmeron, Irina Arévalo,
- Abstract summary: This research introduces a novel federated learning framework employing fuzzy cognitive maps.
It is designed to comprehensively address the challenges posed by diverse data distributions and non-identically distributed features.
The results demonstrate the effectiveness of the approach in achieving the desired learning outcomes while maintaining privacy and confidentiality standards.
- Score: 1.104960878651584
- License:
- Abstract: Data privacy is a major concern in industries such as healthcare or finance. The requirement to safeguard privacy is essential to prevent data breaches and misuse, which can have severe consequences for individuals and organisations. Federated learning is a distributed machine learning approach where multiple participants collaboratively train a model without compromising the privacy of their data. However, a significant challenge arises from the differences in feature spaces among participants, known as non-IID data. This research introduces a novel federated learning framework employing fuzzy cognitive maps, designed to comprehensively address the challenges posed by diverse data distributions and non-identically distributed features in federated settings. The proposal is tested through several experiments using four distinct federation strategies: constant-based, accuracy-based, AUC-based, and precision-based weights. The results demonstrate the effectiveness of the approach in achieving the desired learning outcomes while maintaining privacy and confidentiality standards.
Related papers
- TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning [16.898842295300067]
Federated learning is a computing paradigm that enhances privacy by enabling multiple parties to collaboratively train a machine learning model without revealing personal data.
Traditional federated learning platforms are unable to ensure privacy due to privacy leaks caused by the interchange of gradients.
This paper proposes TAPFed, an approach for achieving privacy-preserving federated learning in the context of multiple decentralized aggregators with malicious actors.
arXiv Detail & Related papers (2025-01-09T08:24:10Z) - A chaotic maps-based privacy-preserving distributed deep learning for
incomplete and Non-IID datasets [1.30536490219656]
Federated Learning is a machine learning approach that enables the training of a deep learning model among several participants with sensitive data.
In this research, the authors employ a secured Federated Learning method with an additional layer of privacy and propose a method for addressing the non-IID challenge.
arXiv Detail & Related papers (2024-02-15T17:49:50Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Fairness and Privacy in Federated Learning and Their Implications in
Healthcare [0.0]
This paper endeavors to outline the typical lifecycle of fair federated learning in research as well as provide an updated taxonomy to account for the current state of fairness in implementations.
arXiv Detail & Related papers (2023-08-15T14:32:16Z) - DBFed: Debiasing Federated Learning Framework based on
Domain-Independent [15.639705798326213]
We propose a debiasing federated learning framework based on domain-independent, which mitigates model bias by explicitly encoding sensitive attributes during client-side training.
This paper conducts experiments on three real datasets and uses five evaluation metrics of accuracy and fairness to quantify the effect of the model.
arXiv Detail & Related papers (2023-07-10T14:39:57Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Towards Federated Long-Tailed Learning [76.50892783088702]
Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks.
Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data.
This paper focuses on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework.
arXiv Detail & Related papers (2022-06-30T02:34:22Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
We study the multi-class classification setting where the labels are considered sensitive and ought to be protected.
We propose a new algorithm for training deep neural networks with label differential privacy, and run evaluations on several datasets.
arXiv Detail & Related papers (2021-02-11T15:09:06Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.