TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series Analysis
- URL: http://arxiv.org/abs/2412.12886v1
- Date: Tue, 17 Dec 2024 13:10:02 GMT
- Title: TimeCHEAT: A Channel Harmony Strategy for Irregularly Sampled Multivariate Time Series Analysis
- Authors: Jiexi Liu, Meng Cao, Songcan Chen,
- Abstract summary: Channel-independent (CI) and channel-dependent (CD) strategies can be applied locally and globally.
We introduce the Channel Harmony ISMTS Transformer (TimeCHEAT)
Globally, the CI strategy is applied across patches, allowing the Transformer to learn individualized attention patterns for each channel.
Experimental results indicate our proposed TimeCHEAT demonstrates competitive SOTA performance across three mainstream tasks.
- Score: 45.34420094525063
- License:
- Abstract: Irregularly sampled multivariate time series (ISMTS) are prevalent in reality. Due to their non-uniform intervals between successive observations and varying sampling rates among series, the channel-independent (CI) strategy, which has been demonstrated more desirable for complete multivariate time series forecasting in recent studies, has failed. This failure can be further attributed to the sampling sparsity, which provides insufficient information for effective CI learning, thereby reducing its capacity. When we resort to the channel-dependent (CD) strategy, even higher capacity cannot mitigate the potential loss of diversity in learning similar embedding patterns across different channels. We find that existing work considers CI and CD strategies to be mutually exclusive, primarily because they apply these strategies to the global channel. However, we hold the view that channel strategies do not necessarily have to be used globally. Instead, by appropriately applying them locally and globally, we can create an opportunity to take full advantage of both strategies. This leads us to introduce the Channel Harmony ISMTS Transformer (TimeCHEAT), which utilizes the CD locally and the CI globally. Specifically, we segment the ISMTS into sub-series level patches. Locally, the CD strategy aggregates information within each patch for time embedding learning, maximizing the use of relevant observations while reducing long-range irrelevant interference. Here, we enhance generality by transforming embedding learning into an edge weight prediction task using bipartite graphs, eliminating the need for special prior knowledge. Globally, the CI strategy is applied across patches, allowing the Transformer to learn individualized attention patterns for each channel. Experimental results indicate our proposed TimeCHEAT demonstrates competitive SOTA performance across three mainstream tasks.
Related papers
- DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting [13.05900224897486]
Real-world time series often show heterogeneous temporal patterns caused by distribution shifts over time.
correlations among channels are complex and intertwined, making it hard to model the interactions among channels precisely and flexibly.
We propose a general framework called DUET, which introduces dual clustering on the temporal and channel dimensions.
arXiv Detail & Related papers (2024-12-14T15:15:17Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
Time series forecasting plays a crucial role in various fields such as finance, traffic management, energy, and healthcare.
Several methods utilize mechanisms like attention or mixer to address this by capturing channel correlations.
This paper presents an efficient-based model, the Series-cOre Fused Time Series forecaster (SOFTS)
arXiv Detail & Related papers (2024-04-22T14:06:35Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
We develop a novel and adaptable Channel Clustering Module ( CCM)
CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities.
CCM can boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively.
arXiv Detail & Related papers (2024-03-31T02:46:27Z) - MCformer: Multivariate Time Series Forecasting with Mixed-Channels Transformer [8.329947472853029]
Channel Independence (CI) strategy treats all channels as a single channel, expanding the dataset.
Mixed Channels strategy combines the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting.
Model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information.
arXiv Detail & Related papers (2024-03-14T09:43:07Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting [83.60876685008225]
We introduce a deep expansion learning framework, DEPTS, for PTS forecasting.
DEPTS starts with a decoupled formulation by introducing the periodic state as a hidden variable.
Our two customized modules also have certain interpretable capabilities, such as attributing the forecasts to either local momenta or global periodicity.
arXiv Detail & Related papers (2022-03-15T06:51:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.