An Agentic Approach to Automatic Creation of P&ID Diagrams from Natural Language Descriptions
- URL: http://arxiv.org/abs/2412.12898v1
- Date: Tue, 17 Dec 2024 13:21:26 GMT
- Title: An Agentic Approach to Automatic Creation of P&ID Diagrams from Natural Language Descriptions
- Authors: Shreeyash Gowaikar, Srinivasan Iyengar, Sameer Segal, Shivkumar Kalyanaraman,
- Abstract summary: We introduce a novel copilot for automating the generation of P&IDs from natural language descriptions.
We demonstrate the feasibility of the generation process by evaluating the soundness and completeness of the workflow, and show improved results compared to vanilla zero-shot and few-shot generation approaches.
- Score: 2.8039483625021258
- License:
- Abstract: The Piping and Instrumentation Diagrams (P&IDs) are foundational to the design, construction, and operation of workflows in the engineering and process industries. However, their manual creation is often labor-intensive, error-prone, and lacks robust mechanisms for error detection and correction. While recent advancements in Generative AI, particularly Large Language Models (LLMs) and Vision-Language Models (VLMs), have demonstrated significant potential across various domains, their application in automating generation of engineering workflows remains underexplored. In this work, we introduce a novel copilot for automating the generation of P&IDs from natural language descriptions. Leveraging a multi-step agentic workflow, our copilot provides a structured and iterative approach to diagram creation directly from Natural Language prompts. We demonstrate the feasibility of the generation process by evaluating the soundness and completeness of the workflow, and show improved results compared to vanilla zero-shot and few-shot generation approaches.
Related papers
- Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design [2.368662284133926]
Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools for industrial process design, control, and safety.
The generation of precise and regulation-compliant diagrams remains a significant challenge, particularly in scaling breakthroughs from material discovery to industrial production in an era of automation and digitalization.
This paper introduces an autonomous agentic framework to address these challenges through a twostage approach involving knowledge acquisition and generation.
arXiv Detail & Related papers (2024-12-08T13:36:42Z) - From Words to Workflows: Automating Business Processes [0.2796197251957245]
The limitations of Robotic Process Automation (RPA) have become apparent.
Recent advancements in Artificial Intelligence (AI) have paved the way for Intelligent Automation (IA)
This paper introduces Text2Workflow, a novel method that automatically generates from natural language user requests.
arXiv Detail & Related papers (2024-12-04T16:34:35Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries.
The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator.
The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes.
arXiv Detail & Related papers (2024-08-23T13:52:47Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
We propose a novel model- and feature-based approach to development of vehicle software systems.
One of the key points of the presented approach is the inclusion of modern generative AI, specifically Large Language Models (LLMs)
The resulting pipeline is automated to a large extent, with feedback being generated at each step.
arXiv Detail & Related papers (2024-03-21T15:07:57Z) - A Roadmap Towards Automated and Regulated Robotic Systems [4.6015001632772545]
We argue that the unregulated generative processes from AI is fitted for low level end tasks.
We propose a roadmap that can lead to fully automated and regulated robotic systems.
arXiv Detail & Related papers (2024-03-21T00:14:53Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing.
We explore this hypothesis through the use of a pre-trained transformer-based language model to perform code analysis tasks.
arXiv Detail & Related papers (2020-06-22T21:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.