Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design
- URL: http://arxiv.org/abs/2412.05937v1
- Date: Sun, 08 Dec 2024 13:36:42 GMT
- Title: Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design
- Authors: Sakhinana Sagar Srinivas, Akash Das, Shivam Gupta, Venkataramana Runkana,
- Abstract summary: Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools for industrial process design, control, and safety.
The generation of precise and regulation-compliant diagrams remains a significant challenge, particularly in scaling breakthroughs from material discovery to industrial production in an era of automation and digitalization.
This paper introduces an autonomous agentic framework to address these challenges through a twostage approach involving knowledge acquisition and generation.
- Score: 2.368662284133926
- License:
- Abstract: Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools for industrial process design, control, and safety. However, the generation of precise and regulation-compliant diagrams remains a significant challenge, particularly in scaling breakthroughs from material discovery to industrial production in an era of automation and digitalization. This paper introduces an autonomous agentic framework to address these challenges through a twostage approach involving knowledge acquisition and generation. The framework integrates specialized sub-agents for retrieving and synthesizing multimodal data from publicly available online sources and constructs ontological knowledge graphs using a Graph Retrieval-Augmented Generation (Graph RAG) paradigm. These capabilities enable the automation of diagram generation and open-domain question answering (ODQA) tasks with high contextual accuracy. Extensive empirical experiments demonstrate the frameworks ability to deliver regulation-compliant diagrams with minimal expert intervention, highlighting its practical utility for industrial applications.
Related papers
- OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
We propose OS-Genesis, a novel data synthesis pipeline for Graphical User Interface (GUI) agents.
Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions.
A trajectory reward model is then employed to ensure the quality of the generated trajectories.
arXiv Detail & Related papers (2024-12-27T16:21:58Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
We introduce a novel autonomous agent framework leveraging Retrieval-Augmented Instruction-Tuning (RAIT) to enhance open, customizable small code language models (SLMs)
By combining instruction tuned code SLMs with Retrieval-Augmented Code Generation (RACG) using external tools, the agent generates, debugs, and optimize code from natural language specifications.
Our approach addresses the limitations of the current lack of a foundational AI model for specialized process engineering tasks and offers benefits of explainability, knowledge editing, and cost-effectiveness.
arXiv Detail & Related papers (2024-08-28T15:33:47Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance.
Recent advancements in Generative AI have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA)
We propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework.
arXiv Detail & Related papers (2024-08-24T19:34:04Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries.
The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator.
The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes.
arXiv Detail & Related papers (2024-08-23T13:52:47Z) - Automated Knowledge Graph Learning in Industrial Processes [0.0]
This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications.
Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery.
arXiv Detail & Related papers (2024-07-02T09:47:56Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
Scene graph generation from images is a task of great interest to applications such as robotics.
We propose an initial approximation to a framework called Ontology-Guided Scene Graph Generation (OG-SGG)
arXiv Detail & Related papers (2022-02-21T13:23:15Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
We propose a novel framework for machine learning based indicators combining pattern type and intensity.
In a case-study from semiconductor industry, our framework goes beyond conventional process control and achieves high quality experimental results.
arXiv Detail & Related papers (2021-03-24T10:13:20Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience remote sensing (RS)
In the past decade efforts have been made to process analyze these hyperspectral (HS) products mainly by means of seasoned experts.
For this reason, it is urgent to develop more intelligent and automatic approaches for various HS RS applications.
arXiv Detail & Related papers (2021-03-02T03:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.