Graph Spring Neural ODEs for Link Sign Prediction
- URL: http://arxiv.org/abs/2412.12916v2
- Date: Wed, 18 Dec 2024 10:16:59 GMT
- Title: Graph Spring Neural ODEs for Link Sign Prediction
- Authors: Andrin Rehmann, Alexandre Bovet,
- Abstract summary: We propose a novel message-passing layer architecture called Graph Spring Network (GSN) modeled after spring forces.
We show that our method achieves accuracy close to the state-of-the-art methods with node generation time speedup factors of up to 28,000 on large graphs.
- Score: 49.71046810937725
- License:
- Abstract: Signed graphs allow for encoding positive and negative relations between nodes and are used to model various online activities. Node representation learning for signed graphs is a well-studied task with important applications such as sign prediction. While the size of datasets is ever-increasing, recent methods often sacrifice scalability for accuracy. We propose a novel message-passing layer architecture called Graph Spring Network (GSN) modeled after spring forces. We combine it with a Graph Neural Ordinary Differential Equations (ODEs) formalism to optimize the system dynamics in embedding space to solve a downstream prediction task. Once the dynamics is learned, embedding generation for novel datasets is done by solving the ODEs in time using a numerical integration scheme. Our GSN layer leverages the fast-to-compute edge vector directions and learnable scalar functions that only depend on nodes' distances in latent space to compute the nodes' positions. Conversely, Graph Convolution and Graph Attention Network layers rely on learnable vector functions that require the full positions of input nodes in latent space. We propose a specific implementation called Spring-Neural-Network (SPR-NN) using a set of small neural networks mimicking attracting and repulsing spring forces that we train for link sign prediction. Experiments show that our method achieves accuracy close to the state-of-the-art methods with node generation time speedup factors of up to 28,000 on large graphs.
Related papers
- Towards Dynamic Message Passing on Graphs [104.06474765596687]
We propose a novel dynamic message-passing mechanism for graph neural networks (GNNs)
It projects graph nodes and learnable pseudo nodes into a common space with measurable spatial relations between them.
With nodes moving in the space, their evolving relations facilitate flexible pathway construction for a dynamic message-passing process.
arXiv Detail & Related papers (2024-10-31T07:20:40Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Towards Real-Time Temporal Graph Learning [10.647431919265346]
We propose an end-to-end graph learning pipeline that performs temporal graph construction, creates low-dimensional node embeddings, and trains neural network models in an online setting.
arXiv Detail & Related papers (2022-10-08T22:14:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Isometric Graph Neural Networks [5.306334746787569]
We propose a technique to learn Isometric Graph Neural Networks (IGNN)
IGNN requires changing the input representation space and loss function to enable any GNN algorithm to generate representations that reflect distances between nodes.
We observe a consistent and substantial improvement as high as 400% in Kendall's Tau (KT)
arXiv Detail & Related papers (2020-06-16T22:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.