Isometric Graph Neural Networks
- URL: http://arxiv.org/abs/2006.09554v1
- Date: Tue, 16 Jun 2020 22:51:13 GMT
- Title: Isometric Graph Neural Networks
- Authors: Matthew Walker, Bo Yan, Yiou Xiao, Yafei Wang, Ayan Acharya
- Abstract summary: We propose a technique to learn Isometric Graph Neural Networks (IGNN)
IGNN requires changing the input representation space and loss function to enable any GNN algorithm to generate representations that reflect distances between nodes.
We observe a consistent and substantial improvement as high as 400% in Kendall's Tau (KT)
- Score: 5.306334746787569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many tasks that rely on representations of nodes in graphs would benefit if
those representations were faithful to distances between nodes in the graph.
Geometric techniques to extract such representations have poor scaling over
large graph size, and recent advances in Graph Neural Network (GNN) algorithms
have limited ability to reflect graph distance information beyond the first
degree neighborhood. To enable this highly desired capability, we propose a
technique to learn Isometric Graph Neural Networks (IGNN), which requires
changing the input representation space and loss function to enable any GNN
algorithm to generate representations that reflect distances between nodes. We
experiment with the isometric technique on several GNN architectures for
modeling multiple prediction tasks on multiple datasets. In addition to an
improvement in AUC-ROC as high as $43\%$ in these experiments, we observe a
consistent and substantial improvement as high as 400% in Kendall's Tau (KT), a
measure that directly reflects distance information, demonstrating that the
learned embeddings do account for graph distances.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Learning Graph Neural Networks with Positive and Unlabeled Nodes [34.903471348798725]
Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs.
Most GNN models aggregate information from short distances in each round, and fail to capture long distance relationship in graphs.
In this paper, we propose a novel graph neural network framework, long-short distance aggregation networks (LSDAN) to overcome these limitations.
arXiv Detail & Related papers (2021-03-08T11:43:37Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.