論文の概要: Harnessing Event Sensory Data for Error Pattern Prediction in Vehicles: A Language Model Approach
- arxiv url: http://arxiv.org/abs/2412.13041v1
- Date: Tue, 17 Dec 2024 16:05:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:01:32.361216
- Title: Harnessing Event Sensory Data for Error Pattern Prediction in Vehicles: A Language Model Approach
- Title(参考訳): 車両における誤りパターン予測のための事象知覚データの調和:言語モデルによるアプローチ
- Authors: Hugo Math, Rainer Lienhart, Robin Schön,
- Abstract要約: 車両群からのイベントデータの時間的ダイナミクスとコンテキスト的関係を利用してエラーを予測します。
2つの因果変換器によってモデル化され、車両の故障や故障を予測できる。
平均で160ドルのエラーコードをシーケンスすると、エラーコードの半分しか得られず、80%のF1スコアが得られます。
- 参考スコア(独自算出の注目度): 11.19697400073873
- License:
- Abstract: In this paper, we draw an analogy between processing natural languages and processing multivariate event streams from vehicles in order to predict $\textit{when}$ and $\textit{what}$ error pattern is most likely to occur in the future for a given car. Our approach leverages the temporal dynamics and contextual relationships of our event data from a fleet of cars. Event data is composed of discrete values of error codes as well as continuous values such as time and mileage. Modelled by two causal Transformers, we can anticipate vehicle failures and malfunctions before they happen. Thus, we introduce $\textit{CarFormer}$, a Transformer model trained via a new self-supervised learning strategy, and $\textit{EPredictor}$, an autoregressive Transformer decoder model capable of predicting $\textit{when}$ and $\textit{what}$ error pattern will most likely occur after some error code apparition. Despite the challenges of high cardinality of event types, their unbalanced frequency of appearance and limited labelled data, our experimental results demonstrate the excellent predictive ability of our novel model. Specifically, with sequences of $160$ error codes on average, our model is able with only half of the error codes to achieve $80\%$ F1 score for predicting $\textit{what}$ error pattern will occur and achieves an average absolute error of $58.4 \pm 13.2$h $\textit{when}$ forecasting the time of occurrence, thus enabling confident predictive maintenance and enhancing vehicle safety.
- Abstract(参考訳): 本稿では,自然言語処理と車両からの多変量イベントストリーム処理の類似性について,例えば$\textit{when}$と$\textit{what}$エラーパターンの予測を行う。
当社のアプローチでは,車両群からのイベントデータの時間的ダイナミクスとコンテキスト的関係を活用しています。
イベントデータは、エラーコードの離散値と、時間やマイル数のような連続的な値で構成される。
2つの因果変換器によってモデル化され、車両の故障や故障を予測できる。
したがって、新しい自己教師型学習戦略によってトレーニングされた変換モデルである$\textit{CarFormer}$と、自動回帰型トランスフォーマーデコーダモデルである$\textit{when}$と$\textit{what}$エラーパターンは、エラーコード修正後に発生する可能性が高い。
イベントタイプの高濃度化, 出現頻度の不均衡, ラベル付きデータ制限といった課題にもかかわらず, 実験の結果, 新モデルの優れた予測能力が示された。
具体的には、平均160ドルのエラーコードシーケンスで、エラーコードの半分で80\%$ F1スコアで$\textit{what}$エラーパターンが生成され、平均絶対誤差が5,8.4 \pm 13.2$h $\textit{when}$発生時刻を予測することで、車両安全性の確実な保守と向上を可能にする。
関連論文リスト
- Computational-Statistical Tradeoffs at the Next-Token Prediction Barrier: Autoregressive and Imitation Learning under Misspecification [50.717692060500696]
対数損失を伴う次のトーケン予測は自己回帰シーケンスモデリングの基盤となる。
次トーケン予測は、適度な誤差増幅を表す$C=tilde O(H)$を達成するために堅牢にすることができる。
C=e(log H)1-Omega(1)$。
論文 参考訳(メタデータ) (2025-02-18T02:52:00Z) - PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil Financial Time Series Regularities [0.848210898747543]
金融時系列モデリングは市場行動の理解と予測に不可欠である。
従来のモデルは、非線形性、非定常性、高ノイズレベルのために複雑なパターンを捉えるのに苦労している。
NLPにおける大きな言語モデルの成功に触発されて、$textbfPLUTUS$, a $textbfP$re-trained $textbfL$argeを紹介します。
PLUTUSは10億以上のパラメータを持つ最初のオープンソース、大規模、事前訓練された金融時系列モデルである。
論文 参考訳(メタデータ) (2024-08-19T15:59:46Z) - Fairness Hub Technical Briefs: Definition and Detection of Distribution Shift [0.5825410941577593]
分散シフトは機械学習タスクにおいて一般的な状況であり、モデルのトレーニングに使用されるデータは、モデルが現実世界に適用されるデータとは異なる。
本稿では,教育環境における分布変化の定義と検出に焦点をあてる。
論文 参考訳(メタデータ) (2024-05-23T05:29:36Z) - Language models scale reliably with over-training and on downstream tasks [121.69867718185125]
スケーリング法則は、高価なトレーニング実行を引き出すための有用なガイドである。
しかし、現在の研究と言語モデルがどのように訓練されているかには差がある。
対照的に、スケーリング法則は主に推論における損失を予測するが、モデルは通常下流のタスクのパフォーマンスで比較される。
論文 参考訳(メタデータ) (2024-03-13T13:54:00Z) - Multi-class real-time crash risk forecasting using convolutional neural
network: Istanbul case study [0.0]
本稿では,事故リスク予測におけるニューラルネットワーク(ANN)の性能について述べる。
提案したCNNモデルは、記録、処理、分類された入力特性から学習することができる。
本研究は,CNNモデルをリアルタイムの事故リスク予測のためのマルチクラス予測モデルとして適用することを提案する。
論文 参考訳(メタデータ) (2024-02-09T10:51:09Z) - Towards Optimal Statistical Watermarking [95.46650092476372]
仮説テスト問題として定式化して統計的透かしを研究する。
我々の定式化の鍵は、出力トークンと拒絶領域の結合である。
一般仮説テスト設定において,UMP(Uniformly Most Powerful)の透かしを特徴付ける。
論文 参考訳(メタデータ) (2023-12-13T06:57:00Z) - Language Model Inversion [77.22715643068284]
我々は,次の確率が先行するテキストに関する驚くべき量の情報を含んでいることを示す。
我々の反転法は、BLEUが59ドル、トークンレベルのF1が78ドルでプロンプトを再構築し、正確に27%のプロンプトを回収する。
論文 参考訳(メタデータ) (2023-11-22T19:04:04Z) - Vehicle Price Prediction By Aggregating decision tree model With
Boosting Model [0.0]
このプロジェクトでは、機械学習アルゴリズムの不要なノイズを回避するために、pythonスクリプトを使用してデータの正規化、標準化、クリーン化を行っている。
提案システムは,決定木モデルとグラディエントブースティング予測モデルを用いて,相互に結合して正確な予測を行う。
同じデータセットの助けを借りた中古車の将来の価格予測は、異なるモデルから構成される。
論文 参考訳(メタデータ) (2023-07-29T13:07:57Z) - Towards Fine-Grained Information: Identifying the Type and Location of
Translation Errors [80.22825549235556]
既存のアプローチでは、エラーの位置と型を同期的に考慮することはできない。
我々はtextbf の追加と textbfomission エラーを予測するために FG-TED モデルを構築した。
実験により,本モデルではエラータイプと位置の同時同定が可能であり,最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-02-17T16:20:33Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。