Resolving the Quantum Measurement Problem through Leveraging the Uncertainty Principle
- URL: http://arxiv.org/abs/2412.13214v1
- Date: Fri, 13 Dec 2024 19:56:21 GMT
- Title: Resolving the Quantum Measurement Problem through Leveraging the Uncertainty Principle
- Authors: Kyoung Yeon Kim,
- Abstract summary: The Schrodinger equation is incomplete, inherently unable to explain the collapse of the wavefunction caused by measurement.
We show that in phase space quantum mechanics, uncertainty can be arbitrarily adjusted by tuning the observation window.
Our framework bridges seemingly disparate concepts such as classical mechanics, quantum mechanics, decoherence, and measurement within intrinsic quantum mechanics.
- Score: 0.0
- License:
- Abstract: The Schrodinger equation is incomplete, inherently unable to explain the collapse of the wavefunction caused by measurement; a fundamental issue known as the quantum measurement problem. Quantum mechanics is generally constrained by the uncertainty principle and, therefore, cannot interpret definite observations without uncertainty. Here, we resolve this enigma by demonstrating that in phase space quantum mechanics, particularly through the Wigner Moyal equation, uncertainty can be arbitrarily adjusted by tuning the observation window. An observation window much smaller than the uncertainty limit causes substantial nonlocality, rendering the problem ill posed. This suggests that only with sufficient uncertainty does nonlocality become bounded, resulting in a well posed universe. Conversely, in the absence of uncertainty, spacetime is warped beyond recognition, and the system exists as a superposition of numerous possible states. Measurement collapses this superposition into a unique solution, exhibiting timeless nonlocal interactions. Our framework bridges seemingly disparate concepts such as classical mechanics, quantum mechanics, decoherence, and measurement within intrinsic quantum mechanics even without invoking new theory.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Entropic uncertainty relations in Schwarzschild space-time [10.560954016047198]
We propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system.
We discuss the proposed uncertainty relations and quantum coherence in the context of Schwarzschild space-time.
arXiv Detail & Related papers (2024-07-18T02:26:21Z) - A Method Using Photon Collapse and Entanglement to Transmit Information [13.438312709072457]
We find that measurements cause quantum wave functions to collapse.
By studying the overlooked phenomena of quantum wave function collapse, we find that quantum eigenstate sets may be artificially controlled.
We propose an innovative method for direct information transmission utilizing photon wave function collapse and entanglement.
arXiv Detail & Related papers (2024-06-27T13:22:21Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Distinguishing between quantum and classical Markovian dephasing
dissipation [15.175005339708768]
We consider n qubits subject to correlated Markovian dephasing and present a sufficient condition for when bath-induced dissipation can generate system entanglement.
We find that the presence or absence of time-reversal symmetry plays a crucial role in dissipative entanglement generation.
arXiv Detail & Related papers (2021-09-13T17:50:34Z) - Experimental study of quantum uncertainty from lack of information [3.901856932788151]
The uncertainty in the classical domain comes from the lack of information about the exact state of the system.
In this paper we investigate the issue experimentally by implementing the corresponding two-dimensional and three-dimensional guessing games.
Our results confirm that within the guessing-game framework, the quantum uncertainty to a large extent relies on the fact that quantum information determining the key properties of the game is stored in the degrees of freedom that remain inaccessible to the guessing party.
arXiv Detail & Related papers (2021-05-19T09:15:27Z) - The Measurement Process in Relational Quantum Mechanics [0.0]
Motivated by Breuer's claim that it is impossible for an observer to distinguish all states of a system in which it is contained, wave function collapse is tied to self observation in the Schmidt biorthonormal decomposition of entangled systems.
This approach provides quantum mechanics in general and relational quantum mechanics in particular with a clean, well motivated explanation of the measurement process and wave function collapse.
arXiv Detail & Related papers (2020-12-21T18:50:44Z) - Quantum correlations and quantum-memory-assisted entropic uncertainty
relation in a quantum dot system [0.0]
Uncertainty principle is one of the comprehensive and fundamental concept in quantum theory.
We will study the quantum correlation and quantum memory assisted entropic uncertainty in a quantum dot system.
arXiv Detail & Related papers (2020-06-08T05:16:09Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.