論文の概要: iRBSM: A Deep Implicit 3D Breast Shape Model
- arxiv url: http://arxiv.org/abs/2412.13244v1
- Date: Tue, 17 Dec 2024 18:51:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:12.491212
- Title: iRBSM: A Deep Implicit 3D Breast Shape Model
- Title(参考訳): IRBSM 3D乳房形状モデル
- Authors: Maximilian Weiherer, Antonia von Riedheim, Vanessa Brébant, Bernhard Egger, Christoph Palm,
- Abstract要約: 女性乳房の3次元形状モデルについて検討した。
従来のPCAモデルと比較して、我々のモデルは暗黙のニューラル表現を採用している。
1枚の画像から3次元乳房形状を再構成するプロトタイプアプリケーションを提案する。
- 参考スコア(独自算出の注目度): 4.875132779794641
- License:
- Abstract: We present the first deep implicit 3D shape model of the female breast, building upon and improving the recently proposed Regensburg Breast Shape Model (RBSM). Compared to its PCA-based predecessor, our model employs implicit neural representations; hence, it can be trained on raw 3D breast scans and eliminates the need for computationally demanding non-rigid registration -- a task that is particularly difficult for feature-less breast shapes. The resulting model, dubbed iRBSM, captures detailed surface geometry including fine structures such as nipples and belly buttons, is highly expressive, and outperforms the RBSM on different surface reconstruction tasks. Finally, leveraging the iRBSM, we present a prototype application to 3D reconstruct breast shapes from just a single image. Model and code publicly available at https://rbsm.re-mic.de/implicit.
- Abstract(参考訳): 最近提案されたレゲンズバーグ乳房形状モデル(RBSM)を構築,改良し,女性の乳房の奥深く3次元形状モデルを提案する。
当社のモデルはPCAベースの前任モデルと比較して暗黙の神経表現を採用しており、生の3D乳房スキャンでトレーニングすることができ、非剛性登録(特に機能のない乳房形態では難しいタスク)を計算的に要求する必要がなくなる。
iRBSMと呼ばれる結果のモデルは、乳首や腹ボタンなどの細かな構造を含む詳細な表面形状をキャプチャし、高い表現力を持ち、異なる表面再構成タスクにおいてRBSMより優れる。
最後に、IRBSMを利用して、単一の画像から乳房形状を再構成するプロトタイプを提示する。
モデルとコードはhttps://rbsm.re-mic.de/implicit.comで公開されている。
関連論文リスト
- COSMU: Complete 3D human shape from monocular unconstrained images [24.08612483445495]
対象画像から完全な3次元人物形状を再構成するための新しい枠組みを提案する。
本研究の目的は、入力対象に見えない再建された人体の領域において、高品質な詳細を再現することである。
論文 参考訳(メタデータ) (2024-07-15T10:06:59Z) - VRMM: A Volumetric Relightable Morphable Head Model [55.21098471673929]
本稿では,3次元顔モデリングに先立って,新しい容積・パラメトリック顔モデルであるVRMMを紹介する。
我々のフレームワークは、アイデンティティ、表現、照明の潜在空間を、低次元の表現に効率的に切り離し、エンコードする。
我々は,アバター生成,顔の再構成,アニメーションなどの様々な応用を通じて,VRMMの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-02-06T15:55:46Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
生成事前学習は、2次元視覚における基本モデルの性能を高めることができる。
3Dビジョンでは、トランスフォーマーベースのバックボーンの過度な信頼性と、点雲の秩序のない性質により、生成前のトレーニングのさらなる発展が制限されている。
本稿では,任意の点クラウドモデルに適用可能な3D-to-2D生成事前学習法を提案する。
論文 参考訳(メタデータ) (2023-07-27T16:07:03Z) - Building 3D Generative Models from Minimal Data [3.472931603805115]
一つの3Dテンプレート(1人1人ではなく1人1人)で顔の認識が可能であることを示す。
我々は,1つの3次元テンプレートと少数の2次元画像を用いて,3次元顔の分布の学習を可能にする,予備的な教師なし学習フレームワークにモデルを拡張した。
論文 参考訳(メタデータ) (2022-03-04T20:10:50Z) - Detailed Avatar Recovery from Single Image [50.82102098057822]
本稿では,単一画像からエンフデテールアバターを回収するための新しい枠組みを提案する。
階層的メッシュ変形フレームワークでは、ディープニューラルネットワークを使用して3次元形状を洗練しています。
本手法は,皮膚モデルを超えて,完全なテクスチャで詳細な人体形状を復元することができる。
論文 参考訳(メタデータ) (2021-08-06T03:51:26Z) - Learning the shape of female breasts: an open-access 3D statistical
shape model of the female breast built from 110 breast scans [5.074812070492739]
レーゲンスバーグ乳形モデル(Regensburg Breast Shape Model, RBSM)は、110個の乳腺スキャンで作られた女性の乳房の3次元統計形状モデルである。
RBSMは胸郭の形状から可能な限り独立して様々な乳房形状を産生することができる。
論文 参考訳(メタデータ) (2021-07-28T16:14:49Z) - PC-HMR: Pose Calibration for 3D Human Mesh Recovery from 2D
Images/Videos [47.601288796052714]
我々は2つの新しいPoseフレームワーク、すなわちSerial PC-HMRとParallel PC-HMRを開発した。
当社のフレームワークは、データ駆動学習と幾何学的モデリングの汎用的かつ補完的な統合に基づいています。
我々は一般的なベンチマーク(Human3.6M, 3DPW, SURREAL)について広範な実験を行い、PC-HMRフレームワークがSOTA結果を達成する。
論文 参考訳(メタデータ) (2021-03-16T12:12:45Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
単眼・部分閉塞視からヒトの高密度3次元再構成を実現することの問題点を考察する。
身体の形状やポーズをパラメータ化することで、あいまいさをより効果的にモデル化できることを示唆する。
提案手法は, 3次元人間の標準ベンチマークにおいて, あいまいなポーズ回復において, 代替手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-02T13:55:31Z) - SMPLpix: Neural Avatars from 3D Human Models [56.85115800735619]
従来のレンダリングと画素空間で動作する最新の生成ネットワークのギャップを埋める。
我々は、スパースな3Dメッシュ頂点をフォトリアリスティックな画像に変換するネットワークを訓練する。
我々は,フォトリアリズムのレベルとレンダリング効率の両面で,従来の微分可能よりも優位性を示す。
論文 参考訳(メタデータ) (2020-08-16T10:22:00Z) - SparseFusion: Dynamic Human Avatar Modeling from Sparse RGBD Images [49.52782544649703]
本稿では,RGBDフレームのスパース集合に基づく3次元人体形状の再構築手法を提案する。
主な課題は、これらのスパースフレームを標準的な3Dモデルにしっかりと融合させる方法だ。
私たちのフレームワークは柔軟で、潜在的なアプリケーションは形状の再構築を超えています。
論文 参考訳(メタデータ) (2020-06-05T18:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。