Gaussian process model kernels for noisy optimization in variational quantum algorithms
- URL: http://arxiv.org/abs/2412.13271v1
- Date: Tue, 17 Dec 2024 19:05:32 GMT
- Title: Gaussian process model kernels for noisy optimization in variational quantum algorithms
- Authors: Luca Arceci, Viacheslav Kuzmin, Rick Van Bijnen,
- Abstract summary: Variational Quantum Algorithms (VQAs) aim at solving classical or quantum optimization problems by optimizing parametrized trial states on a quantum device, based on the outcomes of noisy projective measurements.
We introduce trigonometric kernels, inspired by the observation that typical VQA cost functions display oscillatory behaviour with only few frequencies.
- Score: 0.0
- License:
- Abstract: Variational Quantum Algorithms (VQAs) aim at solving classical or quantum optimization problems by optimizing parametrized trial states on a quantum device, based on the outcomes of noisy projective measurements. The associated optimization process benefits from an accurate modeling of the cost function landscape using Gaussian Process Models (GPMs), whose performance is critically affected by the choice of their kernel. Here we introduce trigonometric kernels, inspired by the observation that typical VQA cost functions display oscillatory behaviour with only few frequencies. Appropriate scores to benchmark the reliability of a GPM are defined, and a systematic comparison between different kernels is carried out on prototypical problems from quantum chemistry and combinatorial optimization. We further introduce RotoGP, a sequential line-search optimizer equipped with a GPM, and test how different kernels can help mitigate noise and improve optimization convergence. Overall, we observe that the trigonometric kernels show the best performance in most of the cases under study.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy quantum devices.
These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop.
A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device.
arXiv Detail & Related papers (2021-06-16T10:40:00Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.