In-context learning for medical image segmentation
- URL: http://arxiv.org/abs/2412.13299v1
- Date: Tue, 17 Dec 2024 19:59:08 GMT
- Title: In-context learning for medical image segmentation
- Authors: Eichi Takaya, Shinnosuke Yamamoto,
- Abstract summary: In-context Cascade (ICS) is a novel method that minimizes annotation requirements while achieving high segmentation accuracy for sequential medical images.
ICS builds on the UniverSeg framework, which performs few-shot segmentation using support images without additional training.
We evaluate the proposed method on the HVSMR dataset, which includes segmentation tasks for eight cardiac regions.
- Score: 0.4143603294943439
- License:
- Abstract: Annotation of medical images, such as MRI and CT scans, is crucial for evaluating treatment efficacy and planning radiotherapy. However, the extensive workload of medical professionals limits their ability to annotate large image datasets, posing a bottleneck for AI applications in medical imaging. To address this, we propose In-context Cascade Segmentation (ICS), a novel method that minimizes annotation requirements while achieving high segmentation accuracy for sequential medical images. ICS builds on the UniverSeg framework, which performs few-shot segmentation using support images without additional training. By iteratively adding the inference results of each slice to the support set, ICS propagates information forward and backward through the sequence, ensuring inter-slice consistency. We evaluate the proposed method on the HVSMR dataset, which includes segmentation tasks for eight cardiac regions. Experimental results demonstrate that ICS significantly improves segmentation performance in complex anatomical regions, particularly in maintaining boundary consistency across slices, compared to baseline methods. The study also highlights the impact of the number and position of initial support slices on segmentation accuracy. ICS offers a promising solution for reducing annotation burdens while delivering robust segmentation results, paving the way for its broader adoption in clinical and research applications.
Related papers
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
We propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation.
Our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner.
Our experiments demonstrate that MORSE can work well with different medical segmentation backbones.
arXiv Detail & Related papers (2023-04-06T16:44:03Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
We propose a novel framework for few-shot medical image segmentation, termed CAT-Net.
Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information.
We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI.
arXiv Detail & Related papers (2023-03-24T09:10:14Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
We introduce a novel deep neural network architecture that exploits the inherent spatial coherence of anatomical structures.
Our approach is well equipped to capture long-range spatial dependencies in the segmented pixel/voxel space.
Our method performs favourably to commonly used U-Net and U-Net++ architectures.
arXiv Detail & Related papers (2021-03-22T10:37:20Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.