論文の概要: Wind Speed Forecasting Based on Data Decomposition and Deep Learning Models: A Case Study of a Wind Farm in Saudi Arabia
- arxiv url: http://arxiv.org/abs/2412.13356v1
- Date: Tue, 17 Dec 2024 22:04:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:23:45.797667
- Title: Wind Speed Forecasting Based on Data Decomposition and Deep Learning Models: A Case Study of a Wind Farm in Saudi Arabia
- Title(参考訳): データ分解とディープラーニングモデルに基づく風速予測:サウジアラビアの風力発電を事例として
- Authors: Yasmeen Aldossary, Nabil Hewahi, Abdulla Alasaadi,
- Abstract要約: 風力発電は常に風速のボラティリティによる不確実性を伴う。
風速予測(WSF)は電力グリッドのディスパッチ、安定性、制御性に不可欠である。
本研究では,ハイブリッド分解法に基づく定常データのための新しいWSFフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With industrial and technological development and the increasing demand for electric power, wind energy has gradually become the fastest-growing and most environmentally friendly new energy source. Nevertheless, wind power generation is always accompanied by uncertainty due to the wind speed's volatility. Wind speed forecasting (WSF) is essential for power grids' dispatch, stability, and controllability, and its accuracy is crucial to effectively using wind resources. Therefore, this study proposes a novel WSF framework for stationary data based on a hybrid decomposition method and the Bidirectional Long Short-term Memory (BiLSTM) to achieve high forecasting accuracy for the Dumat Al-Jandal wind farm in Al-Jouf, Saudi Arabia. The hybrid decomposition method combines the Wavelet Packet Decomposition (WPD) and the Seasonal Adjustment Method (SAM). The SAM method eliminates the seasonal component of the decomposed subseries generated by WPD to reduce forecasting complexity. The BiLSTM is applied to forecast all the deseasonalized decomposed subseries. Five years of hourly wind speed observations acquired from a location in the Al-Jouf region were used to prove the effectiveness of the proposed model. The comparative experimental results, including 27 other models, demonstrated the proposed model's superiority in single and multiple WSF with an overall average mean absolute error of 0.176549, root mean square error of 0.247069, and R-squared error of 0.985987.
- Abstract(参考訳): 産業と技術の発展と電力需要の増加により、風力エネルギーは急速に成長し、環境に優しい新しいエネルギー源となっている。
それでも、風力発電は常に風速のボラティリティによる不確実性を伴う。
風速予測(WSF)は電力グリッドのディスパッチ、安定性、制御可能性に不可欠であり、その精度は風力資源の有効利用に不可欠である。
そこで本研究では,サウジアラビア・アルジュフのDumat Al-Jandal風力発電所において,ハイブリッド分解法とBidirectional Long Short-term Memory (BiLSTM)に基づく定常データのための新しいWSFフレームワークを提案する。
ハイブリッド分解法は、ウェーブレットパケット分解(WPD)と季節調整法(SAM)を組み合わせたものである。
SAM法は,WPDが生成する分解サブシリーズの季節成分を除去し,予測複雑性を低減する。
BiLSTMは、すべての分解されたサブシリーズを予測するために適用される。
提案手法の有効性を証明するため,Al-Jouf地域の地点から5年間の風速観測を行った。
他の27モデルを含む比較実験の結果、提案モデルでは、平均絶対誤差が0.176549、ルート平均二乗誤差が0.247069、R二乗誤差が0.985987であった。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Short-term Wind Speed Forecasting for Power Integration in Smart Grids based on Hybrid LSSVM-SVMD Method [0.0]
風力エネルギーは、最も広く利用されている再生可能エネルギー資源の1つとなっている。
グリッドシステムへの風力統合の成功は、正確な風速予測モデルに基づいている。
本稿では,短期風速予測のためのハイブリッド機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T10:35:59Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - A Deep Learning Method for Real-time Bias Correction of Wind Field
Forecasts in the Western North Pacific [24.287588853356972]
2020年12月から2021年11月までにECから10日間の風速予測のための実時間転動バイアス補正を行った。
風速と風向バイアスはそれぞれ8-11%,9-14%減少した。
論文 参考訳(メタデータ) (2022-12-29T02:58:12Z) - Multi-Step Short-Term Wind Speed Prediction with Rank Pooling and Fast
Fourier Transformation [0.0]
短期的な風速予測は、経済的な風力利用に不可欠である。
現実の風速データは通常断続的で変動し、既存の浅いモデルに大きな課題をもたらす。
本稿では,多段風速予測,すなわちLR-FFT-RP-MLP/LSTMのための新しいハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2022-11-23T14:02:52Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Hybrid Transformer Network for Different Horizons-based Enriched Wind
Speed Forecasting [0.0]
高度に正確な水平線に基づく風速予測は、より現代的な電力システムを促進する。
本稿では,新しい風速予測モデルを提案し,異なる地平線に適用した。
実時間Kethanurとの比較分析により,提案したICEEMDAN-TNF-MLPN-RECSハイブリッドモデルの性能が向上したことが明らかとなった。
論文 参考訳(メタデータ) (2022-04-07T12:03:53Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
風力タービンの健全性解析のための2つの新しい手法を提案する。
第1の方法は、比較的高低電力生産の減少または増加を評価することを目的とする。
第2の方法は抽出された概念の全体的ドリフトを評価する。
論文 参考訳(メタデータ) (2021-12-09T14:04:55Z) - Wind Speed Prediction and Visualization Using Long Short-Term Memory
Networks (LSTM) [1.8495489370732452]
本稿では,風力発電計画と実現可能性研究を簡易化する風速予測手法を提案する。
その結果、長期記憶(LSTM)は97.8%の精度で他のモデルより優れていることが判明した。
論文 参考訳(メタデータ) (2020-05-22T17:51:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。