SocialED: A Python Library for Social Event Detection
- URL: http://arxiv.org/abs/2412.13472v1
- Date: Wed, 18 Dec 2024 03:37:47 GMT
- Title: SocialED: A Python Library for Social Event Detection
- Authors: Kun Zhang, Xiaoyan Yu, Pu Li, Hao Peng, Philip S. Yu,
- Abstract summary: SocialED is a comprehensive, open-source Python library designed to support social event detection (SED) tasks.
It provides a unified API with detailed documentation, offering researchers and practitioners a complete solution for event detection in social media.
SocialED supports a wide range of preprocessing techniques, such as graph construction and tokenization, and includes standardized interfaces for training models and making predictions.
- Score: 53.928241775629566
- License:
- Abstract: SocialED is a comprehensive, open-source Python library designed to support social event detection (SED) tasks, integrating 19 detection algorithms and 14 diverse datasets. It provides a unified API with detailed documentation, offering researchers and practitioners a complete solution for event detection in social media. The library is designed with modularity in mind, allowing users to easily adapt and extend components for various use cases. SocialED supports a wide range of preprocessing techniques, such as graph construction and tokenization, and includes standardized interfaces for training models and making predictions. By integrating popular deep learning frameworks, SocialED ensures high efficiency and scalability across both CPU and GPU environments. The library is built adhering to high code quality standards, including unit testing, continuous integration, and code coverage, ensuring that SocialED delivers robust, maintainable software. SocialED is publicly available at \url{https://github.com/RingBDStack/SocialED} and can be installed via PyPI.
Related papers
- PyPulse: A Python Library for Biosignal Imputation [58.35269251730328]
We introduce PyPulse, a Python package for imputation of biosignals in both clinical and wearable sensor settings.
PyPulse's framework provides a modular and extendable framework with high ease-of-use for a broad userbase, including non-machine-learning bioresearchers.
We released PyPulse under the MIT License on Github and PyPI.
arXiv Detail & Related papers (2024-12-09T11:00:55Z) - A Comprehensive Guide to Combining R and Python code for Data Science, Machine Learning and Reinforcement Learning [42.350737545269105]
We show how to run Python's scikit-learn, pytorch and OpenAI gym libraries for building Machine Learning, Deep Learning, and Reinforcement Learning projects easily.
arXiv Detail & Related papers (2024-07-19T23:01:48Z) - UncertaintyPlayground: A Fast and Simplified Python Library for
Uncertainty Estimation [0.0]
UncertaintyPlayground is a Python library built on PyTorch and GPyTorch for uncertainty estimation in supervised learning tasks.
The library offers fast training for Gaussian and multi-modal outcome distributions.
It can visualize the prediction intervals of one or more instances.
arXiv Detail & Related papers (2023-10-23T18:36:54Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTS is an open-source Python library dedicated to data mining and analysis on partially-observed time series.
It provides easy access to diverse algorithms categorized into four tasks: imputation, classification, clustering, and forecasting.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGOD is an open-source library for detecting outliers in graph data.
It supports a wide array of leading graph-based methods for outlier detection.
PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI)
arXiv Detail & Related papers (2022-04-26T06:15:21Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Small-Text: Active Learning for Text Classification in Python [23.87081733039124]
small-text is an easy-to-use active learning library for Python.
It offers pool-based active learning for single- and multi-label text classification.
arXiv Detail & Related papers (2021-07-21T19:23:56Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealth is an open-source Python toolbox for developing various predictive models on healthcare data.
The data preprocessing module enables the transformation of complex healthcare datasets into machine learning friendly formats.
The predictive modeling module provides more than 30 machine learning models, including established ensemble trees and deep neural network-based approaches.
arXiv Detail & Related papers (2021-01-11T22:02:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.