PyGDA: A Python Library for Graph Domain Adaptation
- URL: http://arxiv.org/abs/2503.10284v1
- Date: Thu, 13 Mar 2025 11:52:23 GMT
- Title: PyGDA: A Python Library for Graph Domain Adaptation
- Authors: Zhen Zhang, Meihan Liu, Bingsheng He,
- Abstract summary: PyGDA is an open-source Python library tailored for graph domain adaptation.<n>It covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets.<n>To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing.
- Score: 26.93811240984478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph domain adaptation has emerged as a promising approach to facilitate knowledge transfer across different domains. Recently, numerous models have been proposed to enhance their generalization capabilities in this field. However, there is still no unified library that brings together existing techniques and simplifies their implementation. To fill this gap, we introduce PyGDA, an open-source Python library tailored for graph domain adaptation. As the first comprehensive library in this area, PyGDA covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets. Specifically, PyGDA offers modular components, enabling users to seamlessly build custom models with a variety of commonly used utility functions. To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing, ensuring efficient computation. In addition, PyGDA also includes comprehensive performance benchmarks and well-documented user-friendly API for both researchers and practitioners. To foster convenient accessibility, PyGDA is released under the MIT license at https://github.com/pygda-team/pygda, and the API documentation is https://pygda.readthedocs.io/en/stable/.
Related papers
- SocialED: A Python Library for Social Event Detection [53.928241775629566]
SocialED is a comprehensive, open-source Python library designed to support social event detection (SED) tasks.<n>It provides a unified API with detailed documentation, offering researchers and practitioners a complete solution for event detection in social media.<n>SocialED supports a wide range of preprocessing techniques, such as graph construction and tokenization, and includes standardized interfaces for training models and making predictions.
arXiv Detail & Related papers (2024-12-18T03:37:47Z) - PyPulse: A Python Library for Biosignal Imputation [58.35269251730328]
We introduce PyPulse, a Python package for imputation of biosignals in both clinical and wearable sensor settings.
PyPulse's framework provides a modular and extendable framework with high ease-of-use for a broad userbase, including non-machine-learning bioresearchers.
We released PyPulse under the MIT License on Github and PyPI.
arXiv Detail & Related papers (2024-12-09T11:00:55Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$ is an open-source library that supports customizable interventions on a range of different PyTorch modules.
We show how $textbfpyvene$ provides a unified framework for performing interventions on neural models and sharing the intervened upon models with others.
arXiv Detail & Related papers (2024-03-12T16:46:54Z) - pyGSL: A Graph Structure Learning Toolkit [14.000763778781547]
pyGSL is a Python library that provides efficient implementations of state-of-the-art graph structure learning models.
pyGSL is written in GPU-friendly ways, allowing one to scale to much larger network tasks.
arXiv Detail & Related papers (2022-11-07T14:23:10Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGOD is an open-source library for detecting outliers in graph data.
It supports a wide array of leading graph-based methods for outlier detection.
PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI)
arXiv Detail & Related papers (2022-04-26T06:15:21Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM is an object-oriented Python implementation of Heterogeneous-Hidden Markov Models (HHMMs)
PyHHMM emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training.
PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License.
arXiv Detail & Related papers (2022-01-12T07:32:36Z) - PyGAD: An Intuitive Genetic Algorithm Python Library [0.0]
PyGAD is an easy-to-use Python library for building the genetic algorithm.
PyGAD supports a wide range of parameters to give the user control over everything in its life cycle.
arXiv Detail & Related papers (2021-06-11T04:08:30Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP)
The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike.
arXiv Detail & Related papers (2020-02-09T23:34:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.