論文の概要: GUI Agents: A Survey
- arxiv url: http://arxiv.org/abs/2412.13501v1
- Date: Wed, 18 Dec 2024 04:48:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:23:26.843907
- Title: GUI Agents: A Survey
- Title(参考訳): GUIエージェント: 調査
- Authors: Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie, Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon, Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, Franck Dernoncourt,
- Abstract要約: グラフィカルユーザインタフェース(GUI)エージェントは、人間とコンピュータのインタラクションを自動化するためのトランスフォーメーションアプローチとして登場した。
GUIエージェントの関心の高まりと基本的な重要性により、ベンチマーク、評価指標、アーキテクチャ、トレーニングメソッドを分類する総合的な調査を提供する。
- 参考スコア(独自算出の注目度): 129.94551809688377
- License:
- Abstract: Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems or software applications via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)エージェントは,人間とコンピュータのインタラクションを自動化するためのトランスフォーメーションアプローチとして登場した。
これらのエージェントはGUIを介してデジタルシステムやソフトウェアアプリケーションと自律的に対話し、クリック、タイピング、様々なプラットフォームにわたる視覚的要素のナビゲートといった人間の行動をエミュレートする。
GUIエージェントの関心の高まりと基本的な重要性により、ベンチマーク、評価指標、アーキテクチャ、トレーニングメソッドを分類する総合的な調査を提供する。
我々は、その認識、推論、計画、行動能力を明確にする統合されたフレームワークを提案する。
さらに、重要なオープン課題を特定し、重要な今後の方向性について議論する。
最後に、この研究は実践者や研究者が現在の進歩、技術、ベンチマーク、そして解決すべき重要なオープンな問題について直感的に理解する基盤となる。
関連論文リスト
- Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
LLMに基づくGUI検索とフィルタリング機構を統合した検索型GUI生成(RAGG)手法を提案する。
また,GUI 生成に Prompt Decomposition (PDGG) と Self-Critique (SCGG) を適用した。
UI/UX経験を持つ100人以上の集団作業者の3000以上のGUIアノテーションを対象とし,SPGGはPDGGやRAGGとは対照的に,より効果的なGUI生成につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-12-15T22:17:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - GUI Agents with Foundation Models: A Comprehensive Survey [91.97447457550703]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
重要な課題を特定し,今後の研究方向性を提案する。
この調査が(M)LLMベースのGUIエージェントの分野におけるさらなる進歩を促すことを願っている。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
本稿では,AIエージェントによって駆動される高度なGUIを組み込んだ高度なアクタ・クリティカル・フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-20T15:28:38Z) - From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces [66.85108822706489]
本稿では,人間がよく使う概念的インタフェースを用いて,デジタル世界と対話するエージェントを作成することに焦点を当てる。
このようなエージェントは、タスクに従うGUIベースの命令のMiniWob++ベンチマークで、人間のクラウドワーカーより優れています。
論文 参考訳(メタデータ) (2023-05-31T23:39:18Z) - Psychologically-Inspired, Unsupervised Inference of Perceptual Groups of
GUI Widgets from GUI Images [21.498096538797952]
本稿では,GUIウィジェットの知覚群を推定するための教師なし画像ベース手法を提案する。
772個のモバイルアプリと20個のUIデザインモックアップから収集した1,091個のGUIのデータセットによる評価は、我々の手法が最先端のアドホックベースのベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2022-06-15T05:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。