ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning
- URL: http://arxiv.org/abs/2412.13520v1
- Date: Wed, 18 Dec 2024 05:45:39 GMT
- Title: ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning
- Authors: Yi Huang, Fangyin Cheng, Fan Zhou, Jiahui Li, Jian Gong, Hongjun Yang, Zhidong Fan, Caigao Jiang, Siqiao Xue, Faqiang Chen,
- Abstract summary: We propose ROMAS, a Role-Based M ulti-A gent System designed to adapt to various scenarios while enabling low code development and one-click deployment.
ROMAS has been effectively deployed in DB-GPT [Xue et al., 2023a, 2024b], a well-known project utilizing LLM-powered database analytics.
- Score: 11.589862354606476
- License:
- Abstract: In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in data analytics when integrated with Multi-Agent Systems (MAS). However, these systems often struggle with complex tasks that involve diverse functional requirements and intricate data processing challenges, necessitating customized solutions that lack broad applicability. Furthermore, current MAS fail to emulate essential human-like traits such as self-planning, self-monitoring, and collaborative work in dynamic environments, leading to inefficiencies and resource wastage. To address these limitations, we propose ROMAS, a novel Role-Based M ulti-A gent System designed to adapt to various scenarios while enabling low code development and one-click deployment. ROMAS has been effectively deployed in DB-GPT [Xue et al., 2023a, 2024b], a well-known project utilizing LLM-powered database analytics, showcasing its practical utility in real-world scenarios. By integrating role-based collaborative mechanisms for self-monitoring and self-planning, and leveraging existing MAS capabilities to enhance database interactions, ROMAS offers a more effective and versatile solution. Experimental evaluations of ROMAS demonstrate its superiority across multiple scenarios, highlighting its potential to advance the field of multi-agent data analytics.
Related papers
- Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation framework, combined with Knowledge Graphs, robustly enhances the reasoning capabilities of Large language models.
We introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities.
Our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments.
arXiv Detail & Related papers (2024-12-10T15:56:03Z) - A Collaborative Multi-Agent Approach to Retrieval-Augmented Generation Across Diverse Data [0.0]
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs)
Traditional RAG systems typically use a single-agent architecture to handle query generation, data retrieval, and response synthesis.
This paper proposes a multi-agent RAG system to address these limitations.
arXiv Detail & Related papers (2024-12-08T07:18:19Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data analysis system.
LAMBDA is designed to address data analysis challenges in complex data-driven applications.
It has the potential to enhance data analysis paradigms by seamlessly integrating human and artificial intelligence.
arXiv Detail & Related papers (2024-07-24T06:26:36Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
We introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment.
We propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques.
arXiv Detail & Related papers (2024-02-23T02:18:12Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks.
Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation.
arXiv Detail & Related papers (2024-01-21T23:36:14Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - A Unified Transferable Model for ML-Enhanced DBMS [53.46830627879208]
We propose a unified model MTMLF that uses a multi-task training procedure to capture the transferable knowledge across tasks and a pretrain finetune procedure to distill the meta knowledge across DBs.
We believe this paradigm is more suitable for cloud DB service, and has the potential to revolutionize the way how ML is used in the future.
arXiv Detail & Related papers (2021-05-06T03:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.