Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields
- URL: http://arxiv.org/abs/2412.13547v1
- Date: Wed, 18 Dec 2024 06:46:40 GMT
- Title: Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields
- Authors: Tao Lu, Ankit Dhiman, R Srinath, Emre Arslan, Angela Xing, Yuanbo Xiangli, R Venkatesh Babu, Srinath Sridhar,
- Abstract summary: Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics.
Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time.
Our goal is to reduce the optimization time by training for fewer steps while maintaining high rendering quality.
- Score: 28.047692891923585
- License:
- Abstract: Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics. Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time. However, the training time of a 3DGS model is slow, often taking 30 minutes for a scene with 200 views. In contrast, our goal is to reduce the optimization time by training for fewer steps while maintaining high rendering quality. Specifically, we combine the guidance from both the position error and the appearance error to achieve a more effective densification. To balance the rate between adding new Gaussians and fitting old Gaussians, we develop a convergence-aware budget control mechanism. Moreover, to make the densification process more reliable, we selectively add new Gaussians from mostly visited regions. With these designs, we reduce the Gaussian optimization steps to one-third of the previous approach while achieving a comparable or even better novel view rendering quality. To further facilitate the rapid fitting of 4K resolution images, we introduce a dilation-based rendering technique. Our method, Turbo-GS, speeds up optimization for typical scenes and scales well to high-resolution (4K) scenarios on standard datasets. Through extensive experiments, we show that our method is significantly faster in optimization than other methods while retaining quality. Project page: https://ivl.cs.brown.edu/research/turbo-gs.
Related papers
- Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives [60.217580865237835]
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians.
We identify and address two key inefficiencies in 3D-GS, achieving substantial improvements in rendering speed, model size, and training time.
Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $6.71times$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets with $10.6times$ fewer primitives than 3
arXiv Detail & Related papers (2024-11-30T20:25:56Z) - Taming 3DGS: High-Quality Radiance Fields with Limited Resources [50.92437599516609]
3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering.
We tackle the challenges of training and rendering 3DGS models on a budget.
We derive faster, numerically equivalent solutions for gradient computation and attribute updates.
arXiv Detail & Related papers (2024-06-21T20:44:23Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS [40.94643885302646]
3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis.
It addresses the challenges of lengthy training times and slow rendering speeds associated with Radiance Neural Fields (NeRFs)
We present a technique utilizing quantized embeddings to significantly reduce per-point memory storage requirements.
arXiv Detail & Related papers (2023-12-07T18:59:55Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.