論文の概要: Two-qubit gate protocols with microwave-dressed Rydberg ions in a linear Paul trap
- arxiv url: http://arxiv.org/abs/2412.13699v1
- Date: Wed, 18 Dec 2024 10:43:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:45:44.038298
- Title: Two-qubit gate protocols with microwave-dressed Rydberg ions in a linear Paul trap
- Title(参考訳): 線形ポールトラップにおけるマイクロ波配向Rydbergイオンを用いた2量子ゲートプロトコル
- Authors: Joseph W. P. Wilkinson, Katrin Bolsmann, Thiago L. M. Guedes, Markus Müller, Igor Lesanovsky,
- Abstract要約: 制御相ゲート動作につながる3つのプロトコルの性能について理論的に検討する。
本研究では, 高速レーザー駆動による非断熱遷移が, システムの特性時間スケールに対して, ゲート忠実度にどのように影響するかを示す。
全体として、この場所は、高速な高精度量子コンピューティングと最終的に量子エラー補正が可能である体制に、リドバーグイオンを閉じ込めた。
- 参考スコア(独自算出の注目度): 1.2600261666440378
- License:
- Abstract: Ultracold trapped atomic ions excited into highly energetic Rydberg states constitute a promising platform for scalable quantum information processing. Elementary building blocks for such tasks are high-fidelity and sufficiently fast entangling two-qubit gates, which can be achieved via strong dipole-dipole interactions between microwave-dressed Rydberg ions, as recently demonstrated in a breakthrough experiment $[\href{https://www.nature.com/articles/s41586-020-2152-9}{1}]$. We theoretically investigate the performance of three protocols leading to controlled-phase gate operations. Starting from a microscopic description of Rydberg ions in a linear Paul trap, we derive an effective Hamiltonian that faithfully captures the essential dynamics underlying the gate protocols. We then use an optimization scheme to fine-tune experimentally controllable parameters like laser detuning and Rabi frequency to yield maximal gate fidelity under each studied protocol. We show how non-adiabatic transitions resulting from fast laser driving relative to the characteristic time scales of the system detrimentally affect the fidelity. Despite this, we demonstrate that in the realistic scenario of Rydberg ions with finite radiative lifetimes, optimizing the best found gate protocol enables achievement of fidelities as high as $99.25\,\%$ for a gate time of $0.2\,\mu\mathrm{s}$. This considerably undercuts entangling gate durations between ground-state ions, for which gate times are typically limited by the comparably slower time scales of vibrational modes. Overall, this places trapped Rydberg ions into the regime where fast high-accuracy quantum computing and eventually quantum error correction become possible.
- Abstract(参考訳): 強いエネルギーのRydberg状態に励起される極低温の原子イオンは、スケーラブルな量子情報処理のための有望なプラットフォームである。
そのようなタスクの基本的なビルディングブロックは、高忠実で十分に高速な2量子ビットゲートであり、マイクロ波でコーティングされたライドバーグイオン間の強い双極子-双極子相互作用によって達成できる。
制御相ゲート動作につながる3つのプロトコルの性能について理論的に検討する。
線形ポールトラップにおけるライドバーグイオンの顕微鏡的記述から始まり、ゲートプロトコルの根底にある重要な力学を忠実に捉える効果的なハミルトン函数を導出する。
次に,レーザデチューニングやラビ周波数などの実験的に制御可能なパラメータを微調整して,各プロトコルの最大ゲート忠実度を求める最適化手法を提案する。
本研究では, 高速レーザー駆動による非断熱遷移が, システムの特性時間スケールにどのように影響するかを示す。
それにもかかわらず、リドベルクイオンの有限放射寿命の現実的なシナリオにおいて、最良のゲートプロトコルを最適化することで、最大99.25\,\%$のフィデリティの達成が可能であり、ゲート時間0.2\,\mu\mathrm{s}$であることを示す。
このことは、地上イオン間のゲートの絡み合いを著しく減らし、通常は振動モードのより遅い時間スケールによってゲートの時間に制限される。
全体として、この場所は、高速な高精度量子コンピューティングと最終的に量子エラー補正が可能である体制に、リドバーグイオンを閉じ込めた。
関連論文リスト
- High-fidelity $CCΦ$ gates via radio-frequency-induced Förster resonances [0.0]
高周波誘起F"オースター共鳴相互作用に基づく新しいCCPhi$量子位相ゲートプロトコルを提案する。
極低温環境下では99.7 %の理論的ゲート特性を達成し、現代の量子誤り訂正技術とのプロトコル互換性を示す。
論文 参考訳(メタデータ) (2023-07-24T13:36:54Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
我々は,Rydberg tweezerシステムにおける2ビットゲートの機械学習支援設計を実演する。
我々は,高忠実度CNOTゲートを実装した最適パルス列を生成する。
単一量子ビット演算の局所的な制御は、原子列上で量子計算を行うのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:24:51Z) - Robust control and optimal Rydberg states for neutral atom two-qubit
gates [0.0]
Rydberg状態を利用した中性原子プラットフォーム上での実験制御の偏差に対する2量子ゲートのロバスト性について検討する。
Rydberg状態への結合強度の有意な偏差が存在する場合、ベル状態の忠実度を$F > 0.999$に維持する頑健なCZゲートを構築する。
論文 参考訳(メタデータ) (2022-12-20T10:53:24Z) - Comparison of Spontaneous Emission in Trapped Ion Multiqubit Gates at
High Magnetic Fields [0.0]
閉じ込められたイオンに対するレーザーベースのマルチキュービット動作におけるデコヒーレンスの主な原因は、非共振自発放出である。
強磁場中においてイオンを捕捉した量子ゲートに対する自然放出の影響を理論的に検討した。
両ゲートは, 最適動作条件下でも同様の性能を有することを示す。
論文 参考訳(メタデータ) (2022-12-06T23:28:57Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
正確な数値と摂動解析手法を用いて効率的にゲートパラメータを抽出する方法を示す。
我々は,$i$SWAP, Control-Z, CNOT など,異なる種類のゲートに対する最適操作条件を同定する。
論文 参考訳(メタデータ) (2021-07-06T02:02:54Z) - Resilient quantum gates on periodically driven Rydberg atoms [10.602950162554212]
ライドバーグ原子のプラットフォームは、量子計算を達成するための最も有望な候補の1つである。
本稿では,Rydberg の反ブロッキングを誘導するために振幅変調場を用いる Rydberg 原子上の制御-$Z$ ゲートを提案する。
ゲートスキームをマルチキュービットケースに一般化し、キュービット数が増加するにつれて、異なるゲート時間でレジリエントなマルチキュービット位相ゲートを1ステップで得ることができる。
論文 参考訳(メタデータ) (2021-01-07T02:13:18Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
我々は,光アレイや超伝導回路に閉じ込められたRydberg原子を用いて,高忠実なホロノミック$(N+1)$-qubit制御ゲートを実現することを提案する。
我々の研究は、リドベルク原子を光アレイや超伝導回路に閉じ込めた、堅牢な多ビットゲートを構築するための新しい道筋を開拓した。
論文 参考訳(メタデータ) (2020-12-05T03:00:47Z) - Rydberg Entangling Gates in Silicon [62.997667081978825]
提案手法では,既存のプロトコルよりも忠実度や速度が大幅に向上することを示す。
このゲートをシリコンのドナーに適用することは、原子の精密ドナー配置と実質的なゲートチューニングに関する厳しい要求を克服するのに役立ちます。
我々は, ドナー励起状態の寿命内に, ベル状態の生成に99.9%の忠実度を持つリドバーグゲート操作が可能であることを示す。
論文 参考訳(メタデータ) (2020-08-26T18:00:02Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
本研究では,2次元マイクロトラップアーキテクチャにおけるイオン量子コンピューティングにおける高速パルス2量子ゲートの利用について検討する。
高速パルスゲートは、トラップ時間よりも高速に、隣接するトラップにおけるイオン間の高忠実な絡み合い動作を実現することができることを示す。
論文 参考訳(メタデータ) (2020-05-01T13:18:22Z) - Fast entangling gates in long ion chains [62.997667081978825]
任意長イオン鎖における超高速パルスを用いた高速エンタングリングゲートの実装モデルを提案する。
達成可能なゲートの忠実度は、鎖内のイオンの数とは独立である。
個々の超高速パルスから99.9%以上の人口移動効率が、高忠実度ゲートの実現のしきい値であることがわかった。
論文 参考訳(メタデータ) (2020-04-09T05:32:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。