論文の概要: MedCoT: Medical Chain of Thought via Hierarchical Expert
- arxiv url: http://arxiv.org/abs/2412.13736v1
- Date: Wed, 18 Dec 2024 11:14:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:05.962595
- Title: MedCoT: Medical Chain of Thought via Hierarchical Expert
- Title(参考訳): MedCoT: 階層的専門家による思考の医学的連鎖
- Authors: Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Tianyi Zhou, Zuozhu Liu,
- Abstract要約: 本稿では,新しい階層的検証手法であるMedCoTについて述べる。
生体画像検査における解釈可能性と精度を高めるように設計されている。
4つの標準Med-VQAデータセットに対する実験的評価は、MedCoTが既存の最先端アプローチを上回ることを示している。
- 参考スコア(独自算出の注目度): 48.91966620985221
- License:
- Abstract: Artificial intelligence has advanced in Medical Visual Question Answering (Med-VQA), but prevalent research tends to focus on the accuracy of the answers, often overlooking the reasoning paths and interpretability, which are crucial in clinical settings. Besides, current Med-VQA algorithms, typically reliant on singular models, lack the robustness needed for real-world medical diagnostics which usually require collaborative expert evaluation. To address these shortcomings, this paper presents MedCoT, a novel hierarchical expert verification reasoning chain method designed to enhance interpretability and accuracy in biomedical imaging inquiries. MedCoT is predicated on two principles: The necessity for explicit reasoning paths in Med-VQA and the requirement for multi-expert review to formulate accurate conclusions. The methodology involves an Initial Specialist proposing diagnostic rationales, followed by a Follow-up Specialist who validates these rationales, and finally, a consensus is reached through a vote among a sparse Mixture of Experts within the locally deployed Diagnostic Specialist, which then provides the definitive diagnosis. Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches, providing significant improvements in performance and interpretability.
- Abstract(参考訳): 人工知能は医学的視覚質問回答(Med-VQA)において進歩してきたが、一般的な研究は答えの正確さに重点を置いており、多くの場合、臨床上重要な推論経路や解釈可能性を見越す傾向がある。
加えて、現在のMed-VQAアルゴリズムは、典型的には特異なモデルに依存し、通常は協調的な専門家評価を必要とする現実世界の医療診断に必要な堅牢さを欠いている。
これらの欠点に対処するために,バイオメディカルイメージングにおける解釈可能性と精度を高めるために,新しい階層的専門家検証推論チェーンであるMedCoTを提案する。
MedCoTは、Med-VQAにおける明示的な推論パスの必要性と、正確な結論を定式化するためのマルチエキスパートレビューの必要性の2つの原則を前提としている。
この方法論には、診断的合理性を提案する初期スペシャリストと、これらの合理性を検証するフォローアップスペシャリストが参加し、最終的に、局所的に展開された診断スペシャリスト内の未熟な専門家の混成の間で投票によって合意に達する。
4つの標準Med-VQAデータセットに対する実験的評価は、MedCoTが既存の最先端アプローチを超え、パフォーマンスと解釈可能性に大きな改善をもたらすことを示している。
関連論文リスト
- MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding [20.83722922095852]
MedXpertQAには17の専門分野と11の身体システムにまたがる4,460の質問が含まれている。
MMは、多様な画像と豊富な臨床情報を備えた専門家レベルの試験問題を導入する。
論文 参考訳(メタデータ) (2025-01-30T14:07:56Z) - Hierarchical Divide-and-Conquer for Fine-Grained Alignment in LLM-Based Medical Evaluation [31.061600616994145]
HDCEvalは、専門医とのコラボレーションによって開発された、きめ細かい医療評価ガイドラインに基づいて構築されている。
このフレームワークは複雑な評価タスクを専門的なサブタスクに分解し、それぞれがエキスパートモデルによって評価される。
この階層的なアプローチは、評価の各側面が専門家の精度で扱われることを保証する。
論文 参考訳(メタデータ) (2025-01-12T07:30:49Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
大規模言語モデル(LLM)による対話システムは、現在医療分野において潜在的に有望であることを示している。
本稿では,医療専門サービスのためのオムニ・メディカル・マルチエージェント・コラボレーション・フレームワークであるMedAideを提案する。
論文 参考訳(メタデータ) (2024-10-16T13:10:27Z) - Emulating Human Cognitive Processes for Expert-Level Medical
Question-Answering with Large Language Models [0.23463422965432823]
BooksMedはLarge Language Model(LLM)に基づいた新しいフレームワークである
人間の認知プロセスをエミュレートして、エビデンスベースの信頼性の高い応答を提供する。
本稿では、専門家レベルのオープンエンドな質問からなるベンチマークであるExpertMedQAを紹介する。
論文 参考訳(メタデータ) (2023-10-17T13:39:26Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - SHAMSUL: Systematic Holistic Analysis to investigate Medical
Significance Utilizing Local interpretability methods in deep learning for
chest radiography pathology prediction [1.0138723409205497]
局所的解釈可能なモデル非依存説明法(LIME)、共有付加的説明法(SHAP)、グラディエント重み付きクラス活性化マッピング(Grad-CAM)、レイヤワイド関連伝搬法(LRP)の4つの方法の適用について検討した。
本分析では, 単一ラベルと多ラベルの予測を両方含み, 定量的, 定性的な調査を通じて包括的かつ不偏な評価を行い, 人的専門家のアノテーションと比較した。
論文 参考訳(メタデータ) (2023-07-16T11:10:35Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。