Accurate and precise optical phase sensor based on a non-linear quantum Sagnac interferometer
- URL: http://arxiv.org/abs/2412.13744v1
- Date: Wed, 18 Dec 2024 11:22:24 GMT
- Title: Accurate and precise optical phase sensor based on a non-linear quantum Sagnac interferometer
- Authors: Romain Dalidet, Laurent Labonté, Gregory Sauder, Sébastien Tanzilli, Anthony Martin,
- Abstract summary: We report an original quantum non-linear interferometer based on a Sagnac configuration allowing precise, accurate, self-stabilized, and reproductible optical phase measurement.
The potential of this system is demonstrated through the measurement of second-order dispersion, namely chromatic dispersion, of a commercial dispersion-shifted fiber at telecommunication wavelength.
- Score: 0.0
- License:
- Abstract: Optical phase measurements play a key role in the detection of macroscopic parameters such as position, velocity, and displacement. They also permit to qualify the microscopic properties of photonic waveguides such as polarization mode dispersion, refractive index difference, and chromatic dispersion. In the quest for ever-better measurement performance and relevance, we report an original quantum non-linear interferometer based on a Sagnac configuration allowing precise, accurate, self-stabilized, and reproductible optical phase measurement. The potential of this system is demonstrated through the measurement of second-order dispersion, namely chromatic dispersion, of a commercial dispersion-shifted fiber at telecommunication wavelength. We assess precision by exhibiting a statistical error of $7.10^{-3}\, \%$, showing more that one order of magnitude compares to state-of-the-art measurements. Additionally, the accuracy of the second-order dispersion value is determined through the measurement of the third-order dispersion, showing a quadratic error as low as 5\,\%. Our system promises the development of photonic-based sensors enabling the measurements of optical-material properties in a user-friendly manner.
Related papers
- Probing molecular photophysics in a matter-wave interferometer [0.0]
We show that matter-wave diffraction off a single standing laser wave can be used as an accurate measurement scheme for photophysical molecular parameters.
These include state-dependent optical polarizabilities and photon-absorption cross sections, the relaxation rates for fluorescence, internal conversion, and intersystem crossing.
arXiv Detail & Related papers (2024-07-26T14:33:38Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - Nonlocality enhanced precision in quantum polarimetry via entangled photons [0.0]
A nonlocal quantum approach is presented to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination.
Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing.
arXiv Detail & Related papers (2024-02-19T08:19:10Z) - Single photon optical bistability [55.2480439325792]
We investigate the bistability in a small Fabry-Perot interferometer (FPI) with the optical wavelength size cavity, the nonlinear Kerr medium and only a few photons, on average, excited by the external quantum field.
Multiple stationary states of the FPI cavity field with different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and the semiconductor-doped glass nonlinear medium.
arXiv Detail & Related papers (2023-04-15T10:44:51Z) - Simultaneous quantum estimation of phase and indistinguishability in a
two photon interferometer [0.0]
We derive the quantum Fisher information matrix associated to the simultaneous estimation of an interferometric phase.
We perform an experiment based on a pair of photons with an unknown degree of indistinguishability entering a two-port interferometer.
arXiv Detail & Related papers (2023-03-27T18:56:03Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Quantum metrology of two-photon absorption [0.0]
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy.
We establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections.
We find that there is no fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections.
arXiv Detail & Related papers (2021-05-04T15:21:15Z) - Improving the Precision of Optical Metrology by Detecting Fewer Photons [22.469758054077396]
In optical metrological protocols to measure physical quantities, it is always beneficial to increase photon number to improve measurement precision.
We show that a modified weak measurement protocol, namely, biased weak measurement significantly improves the precision of optical metrology in the presence of saturation effect.
arXiv Detail & Related papers (2021-03-23T08:14:45Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.