Mesoscopic Insights: Orchestrating Multi-scale & Hybrid Architecture for Image Manipulation Localization
- URL: http://arxiv.org/abs/2412.13753v1
- Date: Wed, 18 Dec 2024 11:43:41 GMT
- Title: Mesoscopic Insights: Orchestrating Multi-scale & Hybrid Architecture for Image Manipulation Localization
- Authors: Xuekang Zhu, Xiaochen Ma, Lei Su, Zhuohang Jiang, Bo Du, Xiwen Wang, Zeyu Lei, Wentao Feng, Chi-Man Pun, Jizhe Zhou,
- Abstract summary: The mesoscopic level serves as a bridge between the macroscopic and microscopic worlds, addressing gaps overlooked by both.
Inspired by this, our paper explores how to simultaneously construct mesoscopic representations of micro and macro information for IML.
Our models surpass the current state-of-the-art in terms of performance, computational complexity, and robustness.
- Score: 45.99713338249702
- License:
- Abstract: The mesoscopic level serves as a bridge between the macroscopic and microscopic worlds, addressing gaps overlooked by both. Image manipulation localization (IML), a crucial technique to pursue truth from fake images, has long relied on low-level (microscopic-level) traces. However, in practice, most tampering aims to deceive the audience by altering image semantics. As a result, manipulation commonly occurs at the object level (macroscopic level), which is equally important as microscopic traces. Therefore, integrating these two levels into the mesoscopic level presents a new perspective for IML research. Inspired by this, our paper explores how to simultaneously construct mesoscopic representations of micro and macro information for IML and introduces the Mesorch architecture to orchestrate both. Specifically, this architecture i) combines Transformers and CNNs in parallel, with Transformers extracting macro information and CNNs capturing micro details, and ii) explores across different scales, assessing micro and macro information seamlessly. Additionally, based on the Mesorch architecture, the paper introduces two baseline models aimed at solving IML tasks through mesoscopic representation. Extensive experiments across four datasets have demonstrated that our models surpass the current state-of-the-art in terms of performance, computational complexity, and robustness.
Related papers
- Macro2Micro: Cross-modal Magnetic Resonance Imaging Synthesis Leveraging Multi-scale Brain Structures [6.2458748518915135]
We introduce Macro2Micro, a deep learning framework that predicts brain microstructure from macrostructure using a Generative Adversarial Network (GAN)
Our results show that Macro2Micro faithfully translates T1-weighted MRIs into corresponding Fractional Anisotropy (FA) images, achieving a 6.8% improvement in the Structural Similarity Index Measure (SSIM) compared to previous methods.
arXiv Detail & Related papers (2024-12-15T18:49:20Z) - Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters [12.182070604073585]
CNNs struggle with modeling long-range dependencies, limiting their ability to fully utilize semantic information in images.
Transformers are hampered by the complexity of quadratic computations.
We propose a model based on the Mamba architecture: Microscopic-Mamba.
arXiv Detail & Related papers (2024-09-12T10:01:33Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.
Our key idea involves challenging the model to discern both matching and distinct elements.
We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - Mini-Monkey: Alleviating the Semantic Sawtooth Effect for Lightweight MLLMs via Complementary Image Pyramid [87.09900996643516]
We introduce a Complementary Image Pyramid (CIP) to mitigate semantic discontinuity during high-resolution image processing.
We also introduce a Scale Compression Mechanism (SCM) to reduce the additional computational overhead by compressing the redundant visual tokens.
Our experiments demonstrate that CIP can consistently enhance the performance across diverse architectures.
arXiv Detail & Related papers (2024-08-04T13:55:58Z) - MatSAM: Efficient Extraction of Microstructures of Materials via Visual
Large Model [11.130574172301365]
Segment Anything Model (SAM) is a large visual model with powerful deep feature representation and zero-shot generalization capabilities.
In this paper, we propose MatSAM, a general and efficient microstructure extraction solution based on SAM.
A simple yet effective point-based prompt generation strategy is designed, grounded on the distribution and shape of microstructures.
arXiv Detail & Related papers (2024-01-11T03:18:18Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Guided-deconvolution for Correlative Light and Electron Microscopy [0.0]
Correlative light and electron microscopy is a powerful tool to study the internal structure of cells.
It combines the mutual benefit of correlating light (LM) and electron (EM) microscopy information.
The classical approach of overlaying LM onto EM images to assign functional to structural information is hampered by the large discrepancy in structural detail visible in the LM images.
arXiv Detail & Related papers (2022-08-19T17:12:15Z) - Semi-Supervised Segmentation of Mitochondria from Electron Microscopy
Images Using Spatial Continuity [3.631638087834872]
We propose a semi-supervised deep learning model that segments mitochondria by leveraging the spatial continuity of their structural, morphological, and contextual information.
Our model achieves performance similar to that of state-of-the-art fully supervised models but requires only 20% of their annotated training data.
arXiv Detail & Related papers (2022-06-06T06:52:19Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.