論文の概要: Meta-Reflection: A Feedback-Free Reflection Learning Framework
- arxiv url: http://arxiv.org/abs/2412.13781v1
- Date: Wed, 18 Dec 2024 12:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:49:21.734818
- Title: Meta-Reflection: A Feedback-Free Reflection Learning Framework
- Title(参考訳): メタリフレクション:フィードバックのないリフレクション学習フレームワーク
- Authors: Yaoke Wang, Yun Zhu, Xintong Bao, Wenqiao Zhang, Suyang Dai, Kehan Chen, Wenqiang Li, Gang Huang, Siliang Tang, Yueting Zhuang,
- Abstract要約: 外部からのフィードバックを伴わずに単一の推論パスのみを必要とするフィードバックフリーリフレクション機構であるメタリフレクションを提案する。
過去のリフレクションを記憶し、取り出す人間の能力によって、メタリフレクションはコードブックに反射的な洞察を統合する。
実世界のシナリオにおけるメタリフレクションの実践性を徹底的に検討し,評価するために,E-Commerce Customer Intent Detectionという産業eコマースベンチマークを導入する。
- 参考スコア(独自算出の注目度): 57.14485943991588
- License:
- Abstract: Despite the remarkable capabilities of large language models (LLMs) in natural language understanding and reasoning, they often display undesirable behaviors, such as generating hallucinations and unfaithful reasoning. A prevalent strategy to mitigate these issues is the use of reflection, which refines responses through an iterative process. However, while promising, reflection heavily relies on high-quality external feedback and requires iterative multi-agent inference processes, thus hindering its practical application. In this paper, we propose Meta-Reflection, a novel feedback-free reflection mechanism that necessitates only a single inference pass without external feedback. Motivated by the human ability to remember and retrieve reflections from past experiences when encountering similar problems, Meta-Reflection integrates reflective insights into a codebook, allowing the historical insights to be stored, retrieved, and used to guide LLMs in problem-solving. To thoroughly investigate and evaluate the practicality of Meta-Reflection in real-world scenarios, we introduce an industrial e-commerce benchmark named E-commerce Customer Intent Detection (ECID). Extensive experiments conducted on both public datasets and the ECID benchmark highlight the effectiveness and efficiency of our proposed approach.
- Abstract(参考訳): 自然言語の理解と推論において大きな言語モデル(LLM)の顕著な能力にもかかわらず、幻覚や不誠実な推論などの望ましくない振る舞いをしばしば示している。
これらの問題を緩和するための一般的な戦略は、反復的なプロセスを通じて応答を洗練するリフレクションの使用である。
しかし、期待する一方で、リフレクションは高品質な外部フィードバックに大きく依存し、反復的なマルチエージェント推論プロセスを必要とするため、実用的応用を妨げている。
本稿では,外部からのフィードバックを伴わずに単一の推論パスのみを必要とする新しいフィードバックフリーリフレクション機構であるメタリフレクションを提案する。
同様の問題に遭遇した過去の経験からリフレクションを記憶し、取り出す人間の能力によって、メタリフレクションは、リフレクティブインサイトをコードブックに統合し、過去のインサイトを保存し、検索し、問題解決にLLMを導くのに使用される。
実世界のシナリオにおけるメタリフレクションの実践性を徹底的に検討し,評価するために,ECID (E-Commerce Customer Intent Detection) という産業eコマースベンチマークを導入する。
パブリックデータセットとECIDベンチマークの両方で実施された大規模な実験は、提案手法の有効性と効率性を強調している。
関連論文リスト
- Positive Experience Reflection for Agents in Interactive Text Environments [9.982616173090264]
Sweet&Sourは、ポジティブな経験と管理された記憶を取り入れた新しいアプローチで、意思決定時にエージェントが利用できるコンテキストを豊かにする。
包括的分析は、クローズドおよびオープンソース両方のLCMにまたがっており、エージェント性能改善におけるSweet&Sourの有効性を実証している。
論文 参考訳(メタデータ) (2024-11-04T16:15:28Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - Enhancing Sequential Recommendations through Multi-Perspective Reflections and Iteration [16.10791252542592]
シーケンスレコメンデーション(SeqRec)は、ユーザの意図を理解し、協調的なフィルタリング情報を活用することによって、ユーザが対話する次の項目を予測することを目的としている。
大規模言語モデル(LLM)は、プロンプトベース、固定されたリフレクションライブラリ、微調整技術を通じて推奨タスクにおいて大きな可能性を示してきた。
MoREは、明示的な選好、暗黙的な選好、協調的な信号に関するLLMベースのリフレクタを生成するための3つのリフレクタを導入している。
論文 参考訳(メタデータ) (2024-09-10T09:58:55Z) - Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
単一の画像反射除去は本質的に不明瞭であり、分離を必要とする反射成分と透過成分の両方が自然な画像統計に従う可能性がある。
既存の手法では、様々な種類の低レベルおよび物理ベースのキューを反射信号の源として利用することでこの問題に対処しようとする。
本稿では,様々な形態のスパース・ヒューマン・ガイダンスを活用するフレキシブル・インタラクティブ・リフレクション・リフレクション・リフレクション・リフレクション・リジェクション・リジェクション・アプローチを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:34:37Z) - Mirror: A Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning [18.5717357875955]
大規模言語モデル(LLM)は、外部リソースにアクセスすることなく知識に富んだ問題に対処する。
知識豊富な推論のための多重パースペクティブ自己回帰法であるMirrorを提案する。
論文 参考訳(メタデータ) (2024-02-22T20:57:17Z) - Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [45.87069217634753]
研究によると、外部からのフィードバックがなければ、Large Language Modelの本質的なリフレクションは不安定である。
我々の調査によると、重要なボトルネックは自己評価されたフィードバックの品質である。
要求に合わせて様々な解決の観点を適応的に探求し、相違点を対比し、これらの相違点を再検討し、相違点を排除するために使用できるチェックリストにまとめます。
論文 参考訳(メタデータ) (2024-01-04T00:32:33Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Reflexion: Language Agents with Verbal Reinforcement Learning [44.85337947858337]
リフレクション(Reflexion)は、ウェイトを更新するのではなく、言語フィードバックによって言語エージェントを強化する新しいフレームワークである。
様々なタイプ(スカラー値または自由形式言語)とフィードバック信号のソース(外部または内部シミュレート)を組み込むのに十分な柔軟性がある。
例えば、ReflexionはHumanEvalのコーディングベンチマークで91%のパス@1精度を達成した。
論文 参考訳(メタデータ) (2023-03-20T18:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。