CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers?
- URL: http://arxiv.org/abs/2412.13810v1
- Date: Wed, 18 Dec 2024 12:57:56 GMT
- Title: CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers?
- Authors: Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian Cavada, Danila Rukhovich, Niki Foteinopoulou, Kseniya Cherenkova, Anis Kacem, Djamila Aouada,
- Abstract summary: CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software.
We consider a wide range of CAD-specific tools including Python libraries, modules of the FreeCAD Python API, helpful routines, rendering functions and other specialized modules.
- Score: 12.5472026454031
- License:
- Abstract: We propose CAD-Assistant, a general-purpose CAD agent for AI-assisted design. Our approach is based on a powerful Vision and Large Language Model (VLLM) as a planner and a tool-augmentation paradigm using CAD-specific modules. CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software, accessed via its Python API. Our framework is able to assess the impact of generated CAD commands on geometry and adapts subsequent actions based on the evolving state of the CAD design. We consider a wide range of CAD-specific tools including Python libraries, modules of the FreeCAD Python API, helpful routines, rendering functions and other specialized modules. We evaluate our method on multiple CAD benchmarks and qualitatively demonstrate the potential of tool-augmented VLLMs as generic CAD task solvers across diverse CAD workflows.
Related papers
- CAD-Recode: Reverse Engineering CAD Code from Point Clouds [12.864274930732055]
3D CAD reverse engineering consists of reconstructing the sketch and CAD operation sequences from 3D representations such as point clouds.
The proposed CAD-Recode translates a point cloud into Python code that, when executed, reconstructs the CAD model.
We show that our CAD Python code output is interpretable by off-the-shelf LLMs, enabling CAD editing and CAD-specific question answering from point clouds.
arXiv Detail & Related papers (2024-12-18T16:55:42Z) - BlenderLLM: Training Large Language Models for Computer-Aided Design with Self-improvement [45.19076032719869]
We present BlenderLLM, a framework for training Large Language Models (LLMs) in Computer-Aided Design (CAD)
Our results reveal that existing models demonstrate significant limitations in generating accurate CAD scripts.
Through minimal instruction-based fine-tuning and iterative self-improvement, BlenderLLM significantly surpasses these models in both functionality and accuracy of CAD script generation.
arXiv Detail & Related papers (2024-12-16T14:34:02Z) - CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM [39.113795259823476]
We introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input.
We use advanced large language models (LLMs) to align the feature space across diverse multi-modalities data and CAD models' vectorized representations.
Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model.
arXiv Detail & Related papers (2024-11-07T18:31:08Z) - CadVLM: Bridging Language and Vision in the Generation of Parametric CAD Sketches [24.239470848849418]
Parametric Computer-Aided Design (CAD) is central to contemporary mechanical design.
We propose CadVLM, an end-to-end vision language model for CAD generation.
arXiv Detail & Related papers (2024-09-26T01:22:29Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
We introduce geometric guidance into the reconstruction network PS-CAD.
We provide the geometry of surfaces where the current reconstruction differs from the complete model as a point cloud.
Second, we use geometric analysis to extract a set of planar prompts, that correspond to candidate surfaces.
arXiv Detail & Related papers (2024-05-24T03:43:55Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
We present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework.
arXiv Detail & Related papers (2022-11-29T13:39:53Z) - Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval
from a Single Image [58.953160501596805]
We propose a novel approach towards constructing a joint embedding space between 2D images and 3D CAD models in a patch-wise fashion.
Our approach is more robust than state of the art in real-world scenarios without any exact CAD matches.
arXiv Detail & Related papers (2021-08-20T20:58:52Z) - Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD
Construction from Human Design Sequences [43.57844212541765]
We present the Fusion 360 Gallery, consisting of a simple language with just the sketch and extrude modeling operations.
We also present an interactive environment called the Fusion 360 Gym, which exposes the sequential construction of a CAD program as a Markov decision process.
arXiv Detail & Related papers (2020-10-05T23:18:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.