Towards Open-world Generalized Deepfake Detection: General Feature Extraction via Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2505.12339v1
- Date: Sun, 18 May 2025 10:12:12 GMT
- Title: Towards Open-world Generalized Deepfake Detection: General Feature Extraction via Unsupervised Domain Adaptation
- Authors: Midou Guo, Qilin Yin, Wei Lu, Xiangyang Luo,
- Abstract summary: Social platforms are flooded with vast amounts of unlabeled synthetic data and authentic data.<n>In open world scenarios, the amount of unlabeled data greatly exceeds that of labeled data.<n>We propose a novel Open-World Deepfake Detection Generalization Enhancement Training Strategy (OWG-DS) to improve the generalization ability of existing methods.
- Score: 15.737902253508235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of generative artificial intelligence, new forgery methods are rapidly emerging. Social platforms are flooded with vast amounts of unlabeled synthetic data and authentic data, making it increasingly challenging to distinguish real from fake. Due to the lack of labels, existing supervised detection methods struggle to effectively address the detection of unknown deepfake methods. Moreover, in open world scenarios, the amount of unlabeled data greatly exceeds that of labeled data. Therefore, we define a new deepfake detection generalization task which focuses on how to achieve efficient detection of large amounts of unlabeled data based on limited labeled data to simulate a open world scenario. To solve the above mentioned task, we propose a novel Open-World Deepfake Detection Generalization Enhancement Training Strategy (OWG-DS) to improve the generalization ability of existing methods. Our approach aims to transfer deepfake detection knowledge from a small amount of labeled source domain data to large-scale unlabeled target domain data. Specifically, we introduce the Domain Distance Optimization (DDO) module to align different domain features by optimizing both inter-domain and intra-domain distances. Additionally, the Similarity-based Class Boundary Separation (SCBS) module is used to enhance the aggregation of similar samples to ensure clearer class boundaries, while an adversarial training mechanism is adopted to learn the domain-invariant features. Extensive experiments show that the proposed deepfake detection generalization enhancement training strategy excels in cross-method and cross-dataset scenarios, improving the model's generalization.
Related papers
- RoGA: Towards Generalizable Deepfake Detection through Robust Gradient Alignment [13.327130030147565]
We propose a novel learning objective that aligns generalization gradient updates with ERM gradient updates.<n>The key innovation is the application of perturbations to model parameters, aligning the ascending points across domains.<n> Experimental results on multiple challenging deepfake detection datasets demonstrate that our gradient alignment strategy outperforms state-of-the-art domain generalization techniques.
arXiv Detail & Related papers (2025-05-27T03:02:21Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection [0.0]
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios.<n>Recent diffusion models have demonstrated remarkable capabilities in diverse scene generation.<n>We propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models.
arXiv Detail & Related papers (2025-03-03T22:36:22Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
We introduce a novel single-domain object detection generalization method, named GoDiff.<n>By integrating pseudo-target domain data with source domain data, we diversify the training dataset.<n> Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
arXiv Detail & Related papers (2024-12-18T13:03:00Z) - Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
We introduce a strong DETR-based detector named Domain Adaptive detection TRansformer ( DATR) for unsupervised domain adaptation of object detection.
Our proposed DATR incorporates a mean-teacher based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias.
Experiments demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios.
arXiv Detail & Related papers (2024-05-20T03:48:45Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of
Invariances in Domain Generalization [7.253255826783766]
We propose a masking strategy, which determines a continuous weight based on the agreement of gradients that flow in each edge of network.
SAND-mask is validated over the Domainbed benchmark for domain generalization.
arXiv Detail & Related papers (2021-06-04T05:20:54Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
Object recognition is a key enabler across industry and defense.
Unfortunately, algorithms trained on existing labeled datasets do not directly generalize to new data because the data distributions do not match.
We propose a novel deep learning framework that overcomes this limitation by learning separate feature extractions for each domain.
arXiv Detail & Related papers (2020-12-22T19:24:44Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.