Denoising Nearest Neighbor Graph via Continuous CRF for Visual Re-ranking without Fine-tuning
- URL: http://arxiv.org/abs/2412.13875v1
- Date: Wed, 18 Dec 2024 14:16:40 GMT
- Title: Denoising Nearest Neighbor Graph via Continuous CRF for Visual Re-ranking without Fine-tuning
- Authors: Jaeyoon Kim, Yoonki Cho, Taeyong Kim, Sung-Eui Yoon,
- Abstract summary: We propose a complementary denoising method based on Continuous Conditional Random Field (C-CRF)
We demonstrate the complementarity of our method through its application to three visual re-ranking methods.
- Score: 15.880661910248827
- License:
- Abstract: Visual re-ranking using Nearest Neighbor graph~(NN graph) has been adapted to yield high retrieval accuracy, since it is beneficial to exploring an high-dimensional manifold and applicable without additional fine-tuning. The quality of visual re-ranking using NN graph, however, is limited to that of connectivity, i.e., edges of the NN graph. Some edges can be misconnected with negative images. This is known as a noisy edge problem, resulting in a degradation of the retrieval quality. To address this, we propose a complementary denoising method based on Continuous Conditional Random Field (C-CRF) that uses a statistical distance of our similarity-based distribution. This method employs the concept of cliques to make the process computationally feasible. We demonstrate the complementarity of our method through its application to three visual re-ranking methods, observing quality boosts in landmark retrieval and person re-identification (re-ID).
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - You Can't Ignore Either: Unifying Structure and Feature Denoising for Robust Graph Learning [34.52299775051481]
We develop a unified graph denoising (UGD) framework to unravel the deadlock between structure and feature denoising.
Specifically, a high-order neighborhood proximity evaluation method is proposed to recognize noisy edges.
We also propose to refine noisy features with reconstruction based on a graph auto-encoder.
arXiv Detail & Related papers (2024-08-01T16:43:55Z) - Fast graph-based denoising for point cloud color information [29.126056066012264]
In some applications, e.g., for live streaming using a 3D point cloud, real-time point cloud denoising methods are required to enhance the visual quality.
This paper proposes a fast graph-based denoising (FGBD) for a large-scale point cloud.
In our experiments, we succeeded in reducing the processing time dramatically while maintaining accuracy relative to conventional denoising methods.
arXiv Detail & Related papers (2024-01-18T04:51:41Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
Graph Neural Networks (GNNs) can learn from graph-structured data through neighborhood information aggregation.
As the number of layers increases, node representations become indistinguishable, which is known as over-smoothing.
We propose a textbfPosterior-Sampling-based, Node-distinguish Residual module (PSNR).
arXiv Detail & Related papers (2023-05-09T12:03:42Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Dynamic Attentive Graph Learning for Image Restoration [6.289143409131908]
We propose a dynamic attentive graph learning model (DAGL) to explore the dynamic non-local property on patch level for image restoration.
Our DAGL can produce state-of-the-art results with superior accuracy and visual quality.
arXiv Detail & Related papers (2021-09-14T12:19:15Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.