論文の概要: Graph-Driven Models for Gas Mixture Identification and Concentration Estimation on Heterogeneous Sensor Array Signals
- arxiv url: http://arxiv.org/abs/2412.13891v1
- Date: Wed, 18 Dec 2024 14:32:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:47:33.626696
- Title: Graph-Driven Models for Gas Mixture Identification and Concentration Estimation on Heterogeneous Sensor Array Signals
- Title(参考訳): 不均一センサアレイ信号のガス混合同定と濃度推定のためのグラフ駆動モデル
- Authors: Ding Wang, Lei Wang, Huilin Yin, Guoqing Gu, Zhiping Lin, Wenwen Zhang,
- Abstract要約: 本研究では、時間グラフ構造を統合した2つの新しいディープラーニングモデルを構築し、性能を向上させる。
GraphCapsNetとGraphANetはどちらも高い精度と安定性を示し、産業環境でのスケーラブルなガス分析のための有望なソリューションとして位置づけている。
- 参考スコア(独自算出の注目度): 21.680865350234164
- License:
- Abstract: Accurately identifying gas mixtures and estimating their concentrations are crucial across various industrial applications using gas sensor arrays. However, existing models face challenges in generalizing across heterogeneous datasets, which limits their scalability and practical applicability. To address this problem, this study develops two novel deep-learning models that integrate temporal graph structures for enhanced performance: a Graph-Enhanced Capsule Network (GraphCapsNet) employing dynamic routing for gas mixture classification and a Graph-Enhanced Attention Network (GraphANet) leveraging self-attention for concentration estimation. Both models were validated on datasets from the University of California, Irvine (UCI) Machine Learning Repository and a custom dataset, demonstrating superior performance in gas mixture identification and concentration estimation compared to recent models. In classification tasks, GraphCapsNet achieved over 98.00% accuracy across multiple datasets, while in concentration estimation, GraphANet attained an R2 score exceeding 0.96 across various gas components. Both GraphCapsNet and GraphANet exhibited significantly higher accuracy and stability, positioning them as promising solutions for scalable gas analysis in industrial settings.
- Abstract(参考訳): 気体の混合物を正確に同定し、その濃度を推定することは、ガスセンサアレイを用いた様々な産業用途において重要である。
しかし、既存のモデルは、スケーラビリティと実用性を制限する異種データセットをまたいだ一般化の課題に直面している。
そこで本研究では, ガス混合分類のための動的ルーティングを用いたグラフ拡張カプセルネットワーク(GraphCapsNet)と, 自己アテンションを利用したグラフ拡張アテンションネットワーク(GraphANet)の2つの新しいディープラーニングモデルを構築した。
どちらのモデルも、カリフォルニア大学アーバイン校(UCI)の機械学習リポジトリとカスタムデータセットのデータセットで検証され、最近のモデルと比較してガス混合の同定と濃度推定において優れた性能を示した。
分類タスクでは、GraphCapsNetは複数のデータセットで98.00%以上の精度を達成する一方で、濃度推定では、様々なガス成分で0.96を超えるR2スコアを達成した。
GraphCapsNetとGraphANetはどちらも高い精度と安定性を示し、産業環境でのスケーラブルなガス分析のための有望なソリューションとして位置づけている。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Degree Distribution based Spiking Graph Networks for Domain Adaptation [17.924123705983792]
Spiking Graph Networks (SGNs)は、グラフ分類におけるエネルギー消費の課題に対処する能力のために、研究者と業界双方から大きな注目を集めている。
まず、SGNにおけるドメイン適応問題を提案し、Dgree-aware Spiking Graph Domain Adaptation for Classificationという新しいフレームワークを提案する。
The proposed DeSGDA address the spiking graph domain adapt problem by three aspects: node degree-aware Personal spiking representation, adversarial feature distribution alignment, pseudo-label distillation。
論文 参考訳(メタデータ) (2024-10-09T13:45:54Z) - GSTAM: Efficient Graph Distillation with Structural Attention-Matching [13.673737442696154]
本稿では,グラフ分類データセットを凝縮する新しい手法であるGSTAM(Graph Distillation with Structure Attention Matching)を紹介する。
GSTAMは、GNNの注意マップを利用して、元のデータセットから合成グラフに構造情報を抽出する。
総合的な実験では、GSTAMは既存の方法よりも優れており、極端な凝縮比では0.45%から6.5%の性能が向上している。
論文 参考訳(メタデータ) (2024-08-29T19:40:04Z) - Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
本研究では,データ拡張のための生成グラフについて検討する。
生成したグラフを実グラフと組み合わせることのパフォーマンスを比較し、生成したグラフの量が異なることがグラフ分類タスクに与える影響を調べる。
その結果,グラフデータの拡張,一貫性のあるラベルの確保,分類性能の向上など,新たなアプローチが導入された。
論文 参考訳(メタデータ) (2024-07-20T06:05:26Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
不均一グラフニューラルネットワークは,グラフ表現学習において大きな可能性を秘めている。
我々は,PC-HGNという異種グラフ学習ネットワークのための関係中心のPooling and Convolutionを設計し,関係固有サンプリングと相互関係の畳み込みを実現する。
実世界の3つのデータセットにおける最先端グラフ学習モデルとの比較により,提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-31T08:43:32Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
本稿では,プライバシ制御により実世界のグラフの分布を学習し,再現する新しいグラフ生成モデルを提案する。
我々のモデルは、GNNモデルのベンチマークに効果的に使用できる大規模な実世界のグラフの、プライバシ制御された合成代用をうまく生成することができる。
論文 参考訳(メタデータ) (2022-07-10T06:42:02Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - FDGATII : Fast Dynamic Graph Attention with Initial Residual and
Identity Mapping [0.39373541926236766]
本稿では,注目機構が選択情報に注目する能力に触発された新しいグラフニューラルネットワークFDGATIIを提案する。
FDG ATII は設計において本質的に並列化可能であり、操作ではホイット効率がよい。
FDG ATII は GAT と GCN をベースとしたベンチマークにおいて,完全教師付きタスクの精度と性能に優れることを示す。
論文 参考訳(メタデータ) (2021-10-21T20:19:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。